The Integration of Neurography and EMG

Erik Stålberg
Uppsala, Sweden

Neurography and EMG, the integration

<table>
<thead>
<tr>
<th>Condition</th>
<th>Neurography</th>
<th>RNS</th>
<th>EMG</th>
<th>SFEMG</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>focal nerve lesion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>root/plexus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MND/MMN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sh p polio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>myotonia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other musc dystrophy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPN/IBM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small fiber neuropathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>myelopathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First choice | Complementary | Not necessary

Neurography in GBS

- demonstrate acute motor and sensory neuropathy
- demonstrate conduction block
- assess: severity, pathology, distribution

Neurography in GBS

- confirm MOTOR-sensory demyelinating pnp
- confirm conduction block (MCS, F persistence)
- assess site (prox-dist --antiMAG)
- assess amount of axonal involvement (CAMP ampl)
- autonomic involvement

NOTE:
- CB due to high temperature
- nerve hypoexcitability

Myotonia

- Special protocol with studies of CMAP
 - short term exercise
 - long term exercise
- Genetic studies

Place of EMG

1. Ways to express EMG abnormality
2. MUP and IP analysis
3. Neurography and EMG, integration
What do we want to express

- Muscle membrane function - spontaneous
- Muscle fibre characteristics; diameter
- MU organisation
 - number of fibres
 - grouping
- N-M transmission
- # motor units
 - total
 - activation; pattern, fullness

Neurography in muscle disorders

- Indications
 - concomitant neuropathy? (mitochondr, pm, paramalignancy, secondary entrapment)
 - use CMAP to assess muscle bulk

Neurography in MND/MMN

MND:
- Exclude axonal neuropathy
- Confirm normal SCS
- Exclude MMN

MMN:
- Demonstrate motor cond block in individual motor nerves
- Confirm normal SCS

EMG in pnp, MUP summary

EMG in pnp, jiggle + poly
Integration EMG_Neurography, Stålberg

Small fiber testing

- Autonomic test (RR, SR)
- Epidermal nerve fiber density
- Thermotests
- Near nerve needle neurography
- Microneurography
- Axon reflex and laser doppler
- Laser evoked potentials (LEP)

Other investigations for muscle

- CK
- Muscle biopsy
 - morphology
 - histochemistry
 - electrophysiology
 - metabolic factors
- Genetic studies
- MRI
- CT
- Ultrasound
Other tests in MND

- **MUNE**
 - Reduced # MU should be assessed in MND, St p polio
 - electrical stimulation (incremental, dual stim sites, statistical)
 - voluntary (MUNIX)
- **TMS**
 - Excitability (threshold and PSTH)
 - CCT
 - TST

EMG in myotonia

- confirm myotonic discharges
- is EMG myopathic or not
- explore distribution (prox-dist)
- effect of temperature
- effect of activity

Neurography in St p polio

- No primary reason
- Atypical symptoms need further EDX
 - neuropathy (pnp, entrapment)

EMG in St p polio

- confirm neurogenic involvement
- find subclinical involvement
- assess degree of MU loss
- find other cause of symptoms:
 - entrapment, radiculopathy

Neurography in MG

- No primary reason for neurography
- Used when picture is atypical and when RNS and SFEMG are negative
- **NOTE:**
 - during any neurography low CMAPs should alert the examiner on nmj problems (remember to test facilitation in routine and in ICU)
SFEMG in MG

- assess increased jitter (same as jiggle in conc EMG)
- confirm normal FD
- not expected
 - increased FD (reinnervation)
 - normal jitter in 20/20 recordings

EMG in CTS

- EMG NOT necessary for the diagnosis *per se*. Neurographic methods are sensitive and specific.
- If EMG is used,
 - the question is to exclude roots; in Ext Carp Rad (C6) and EDC and Flex carp rad (C7)
 - in APB it may answer the question of amount of axonal lesion (but CMAP is usually better)

Autonomic tests, RR, SSR

- To assess involvement
 - in GBS may be vital
 - small fiber involvement
 - specific conditions, e.g. amyloidosis,

EMG in Musc Dystr

- Typical findings
 - spont activity
 - small polyphasic MUPs
 - early recruitment
 - dense or reduced IP (severity)
- Not expected
 - normal EMG - think of non dystrophic cond.
 - myotonia

Neurography in Musc dystr

- No primary reason for neurography
 If performed:
- Expected findings
 - low motor ampl,
 - normal MCV
 - F waves low ampl, normal persistence
 - normal sensory ampl
- Not expected
 - abnormal neurography (think of mitochondrial cond, paramalignant condition)

Neurography

- pathophysiology
 - demyelinating/axonal/CB
- fiber type
 - sensory/motor/autonomic
- fiber size
 - large/small
- distribution
 - distal/proximal
- severity
Neurography in root/plexus

• Sensory (with sensory symptoms)
 – normal distal amplitudes - root or CB anywhere
 – reduced distal ampl - axonal plexus involvement

• Motor (with weakness)
 – reduced distal amplitudes - axonal lesion
 – normal amplitudes - CB

Neurography in focal lesion

Motor symptoms:
 – pathophysiology and severity
 • demyelinating or CB focal testing (SSS)
 • axonal SSS may not help, go to EMG

Sensory symptoms:
 • low distal amplitudes go to other nerves, + EMG
 • normal distal ampl find focus (if not, make SEP)

Neurography in CTS

• to assess:
 • pathophysiology:
 – demyelination latency
 – axonal distal ampl
 – CB block across ligament
 • fiber type
 – sensory/motor
 • severity

CTS severity

• very slight only relative abnormality
 (other nerves; uln mot, uln sens, rad sens)
• slight only sensory abnormaly
• moderate sens + motor
• severe no sens resp, motor abnormality
• very severe no responses

EMG in GBS

• EMG in Early phase:
 – No indication
 – MUNE (but only MUNIX which includes voluntary act)

• EMG in Late phase:
 – degree of axonal involvement
 – jiggle
 – IPC
 – Macro

EMG in MG

• No indication in diagnostic work up
• If SFEMG is neg, EMG is indicated to find alternative diagnosis to MG
EMG in MND
- To confirm
 - generalized denervation
 - fasciculations
- To exclude myopathy

EMG in MMN
- To demonstrate focal/multifocal denervation

Neurography in myotonia
- NCS is usually not necessary when EMG has confirmed myotonia
- When myotonia is suspected, it is wise to start with EMG

RNS in MG
- Least sensitive method. If this is pos. and typical, MG is highly suspected.
 - proximal muscles
 - no treatment
 - warm muscle
- exclude (think of…)
 - LEMS, myotonia, Mc Ardle, cong MG

EMG in PM/IBM
- Expected positive findings
 - myopathy
 - spont. activity (fib, CRD) (th. paraspinals)
- Not expected
 - normal EMG
 - neurogenic pattern (except in end stage)
 - myotonia

EMG in focal nerve lesions
- Localize site
 - pure axonal focal lesion cannot be defined with neurography
 - root lesions (involvement of post rami= root, ant rami for segment)
- assess degree of axonal damage
- follow reinnervation (spont activity, conventional MUP parameters, jiggle, IP)
- MUNE/MUNIX

Why EMG in pnp
Not always necessary…but possible objectives are to:
- assess amount of axonal damage
 - long nerves
- assess dynamics
 - jiggle
- assess distribution
 - distal/prox
 - asymmetric
- exclude other reasons of symptoms
 - distal myopathy
- find clue to underlying condition
 - neurotonia
Distribution of conduction slowing

- GBS: +
- CIDP: +
- CMT1: +
- anti MAG: +

(proximal, even distal, (+))

Conduction block in MMN

- Wrist: 9.9 m/s, 4.1 m/s, 13.9 m/s, 6.1 m/s
- Elbow: 12.3 m/s, 8.3 m/s, 8.9 m/s, 7.3 m/s

MRI in muscle disorders

- Titinopathy (Udd)

NCS vs small fiber neuropathy

- Exclude large fiber pnp
- Large fibers may be involved

EMG in small fiber neuropathy

- Usually not indicated, unless focal symptoms

Small fiber pnp, autonomic tests

- Part of a larger battery of tests
Myelopathy, NCS

- If sensory symptoms, NCS is useful. Should be normal.
- Often F-responses abnormal (increase/decreased)

Myelopathy, evoked pot

- If sensory symptoms – SEP
- If motor symptoms – MEP
- If pain – LEP

Myelopathy, EMG

- Evaluate amount of LMN involvement
 - distribution (spinal cord lesion, PLS)
 - specifics (MND, syringomyelia)