Cardiogenic Shock + Critical Aortic Stenosis = Run the Other Way?!!

Ernest L. Mazzaferri Jr, MD, FACC
Associate Professor, Interventional Cardiology
Severe Aortic Stenosis and Onset of Symptoms

Onset of dyspnea and other heart failure symptoms foretell the worst outlook for AS patients¹

Classic symptoms of AS:
- Angina
- Syncope
- Heart failure

¹Carabello BA, Paulus WJ. *Lancet* 2009; 373: 956-66
Case Study

- 97yo female transferred from OHP for BAV/TAVR evaluation
 - PMHx: HTN, CHF
 - Outside ICU with CHF exacerbation, declined over 2-day period requiring intubation (versed drip)
 - Hemodynamically stable (90-100/50s) but on 100% FiO2
 - ? MS changes but Head CT negative
 - Rx for HCAP
 - Outside echo EF 50%, AVA 0.5cm2
 - “Oh yeah...pt is a DNR CCA but changed code status this morning”.....
Case Study

- Repeat echo at OSU
 - EF 26%
 - Mild RV dysfunction
 - Moderate-severe MR
 - Severe Aortic Valve Calcification
 - Mean gradient 67 mmHg, peak 108 mmHg
 - AVA 0.33 cm²
 - Moderate PHTN, RVSP 57 mm Hg
- Patient has rapid decline upon admission
 - BP 70/40 on 20 mcg/min dopamine, hypoperfusing
 - TAVR Consult Team called for Stat Consult
Palliative Care

Severe AS+ Cardiogenic Shock

Medical Therapy

Mechanical Therapy
Medical Therapy

- **Nitroprusside**
 - **Inclusion:**
 - ICU admission w CHF; Severe AS (< 1 cm²); EF ≤35%; CI <2.2 L/min/m²
 - **Exclusion:**
 - Hypotension requiring inotropic or pressor support or MAP < 60 mmHg

- **Dobutamine**
 - Predominantly β₁ (inotrope/chronotrope)
 - Minimal and β₂; results in vasodilation (decreased SVR)

- **Dopamine**
 - Low dose; dopamine-1 receptors (selective vasodilation renal/mesenteric/cors)
 - 5-10mcg/kg/min; β₁(inotrope/chronotrope)
 - >10 mcg/kg/min; ↑α (vasoconstrictor)

- **Norepinepherine**
 - β₁,α₁ (potent vasoconstrictor, modest increase CO)

- **Phenylepherine**
 - α agonist (pure vasoconstrictor, minimal cardiac inotropy/chronotropy)

Khot, UN et al; N Engl J Med 2003; 348:1756-1763
Palliative Measures

- Protocol development for Palliative Care Consults on critically ill AS patients undergoing evaluation for TAVR
- Palliative Care Consult on all patients in Cardiogenic Shock
 - Address goals of care for patient and family
 - Address advanced mechanical options
 - Identify true risk of procedures
 - End-of-life discussions
Mechanical Therapy

- Mostly Case Reports
 - Lack of evidence based therapies
- Limited, small, non-randomized analysis
- Device options
 - CPB/ECMO
 - Tandem Heart
 - Impella
 - IABP
 - Others?
Percutaneous Balloon Aortic Valvuloplasty

- Indications
 - Bridge to surgery in hemodynamically unstable patients
 - Palliation
 - Bridge to surgery in symptomatic pregnant patients
 - Patients requiring noncardiac surgery – however, guidelines indicate asymptomatic patients with severe AS should proceed to surgery without BAV
 - Bridge to SAVR
 - 83% of Med Mgmnt Pts in PARTNER A
Percutaneous Balloon Aortic Valvuloplasty: Pre-TAVR data, an acceptable medical therapy?

Echocardiographic Data on the 187 Patients Before and After Balloon Aortic Valvuloplasty and at 6-Month Follow-up

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>Baseline</th>
<th>After Valvuloplasty</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-Jet Vmax, m/s</td>
<td>155</td>
<td>4.4±0.7</td>
<td>3.9±0.7*</td>
<td>4.1±0.6t</td>
</tr>
<tr>
<td>Mean ∆P, mmHg</td>
<td>157</td>
<td>49±16</td>
<td>38±14*</td>
<td>43±15t</td>
</tr>
<tr>
<td>AVA, cm²</td>
<td>115</td>
<td>0.57±0.21</td>
<td>0.78±0.31*</td>
<td>0.65±25t</td>
</tr>
<tr>
<td>Aortic regurgitation</td>
<td>176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>44</td>
<td>(25%)</td>
<td>36 (21%)§</td>
<td>32 (18%)t</td>
</tr>
<tr>
<td>Mild</td>
<td>101</td>
<td>(57%)</td>
<td>99 (56%)</td>
<td>98 (56%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>31</td>
<td>(18%)</td>
<td>37 (21%)</td>
<td>44 (25%)</td>
</tr>
<tr>
<td>Severe</td>
<td>0</td>
<td>(0%)</td>
<td>4 (2%)</td>
<td>2 (1%)</td>
</tr>
</tbody>
</table>

AS indicates aortic stenosis; Vmax, maximal velocity; ∆P, pressure gradient; and AVA, aortic valve area.

*P<.0001 compared with baseline and 6-month follow-up.

tP=.009 compared with baseline.

Otto, Circulation. 1994;89:642-650.)
Percutaneous Balloon Aortic Valvuloplasty

Otto, Circulation. 1994;89:642-650.)
Percutaneous Balloon Aortic Valvuloplasty: Bridge to SAVR

- Methods:
 - 90 consecutive patients with severe AS undergoing BAV from 1990 to 2005
 - Patients with no immediate surgical option, BAV was attempted to temporarily improve hemodynamics, with a goal to improve general health of the patient, and ultimately AVR
 - 30% (27) of patients ultimately bridged to SAVR

Kapadia SR, J Interven Cardiol 2010;23:499–508)
Percutaneous Balloon Aortic Valvuloplasty: Bridge to SAVR

- **Methods:**
 - 33 patients (33%) with severe LV dysfunction, Cardiogenic Shock, Severe MR or Severe PHTN
 - 23 had no SAVR
 - 10 had SAVR

Kapadia SR, J Interven Cardiol 2010;23:499–508)
Percutaneous Balloon Aortic Valvuloplasty: Bridge to SAVR

Kapadia SR, J Interven Cardiol 2010;23:499–508)
The Role of Percutaneous Aortic Balloon Valvuloplasty in Patients with Cardiogenic Shock and Critical Aortic Stenosis*

310 BAV → 21 Shock → 9 death in hosp (42%) → 12 Survived to DC (58%)

<table>
<thead>
<tr>
<th>n = 19</th>
<th>Pre BAV</th>
<th>Post BAV</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP (mm Hg)</td>
<td>77 +/- 3</td>
<td>116 +/- 8</td>
<td><0.0001</td>
</tr>
<tr>
<td>Mn Grd (mm Hg)</td>
<td>49.4 +/- 4</td>
<td>21 +/- 3</td>
<td><0.0001</td>
</tr>
<tr>
<td>AVA (cm2)</td>
<td>0.48 +/- 0.04</td>
<td>0.84 +/- 0.06</td>
<td><0.0001</td>
</tr>
<tr>
<td>CI (L/min/m2)</td>
<td>1.84 +/- 0.13</td>
<td>2.24 +/- 0.15</td>
<td>= 0.06</td>
</tr>
</tbody>
</table>

Moreno PR, et al. JACC Vol 23, No 5, April 1994:1071-5
Efficacy Balloon Aortic Valvuloplasty for Critical AS in Patients with Shock*

Prospective analysis, 10-yr, 33 patients

14 Shock patients

10/14 In Hosp Mort (71%)

AVR within 16d 2/2 survive 1-yr

Refused AVR 2/2 survive 1-yr

19 Crit AS for Non-Cardiac Surgery

BAV

95% survival at one year

* Buchwald, AB, et al; Clin Cardiol 2001 Marc;24(3):214-8

Mechanical Therapy
In-hospital and long-term outcome of BAV in TAVR era*

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Shock (23)</th>
<th>No Shock (392)</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Hospital</td>
<td>56.5%</td>
<td>2%</td>
</tr>
<tr>
<td>1-Year</td>
<td>70%</td>
<td>21.7% (B-AVR)</td>
</tr>
<tr>
<td>2-Year</td>
<td>80.4%</td>
<td>38.4% (B-AVR)</td>
</tr>
</tbody>
</table>

Saia F, et al; EuroIntervention 2013 Apr 22:8(12):1388-97
Ventricular Assist Devices or Cardiopulmonary Bypass?

- **Tandem Heart**
 - Left Atrium – Centrifugal Pump – Femoral Artery

- **Impella**
 - Left Ventricle – micro-axial pump - Ascending Aorta

- **ECMO/Cardiopulmonary Bypass**
 - Fem Vein – Centrifugal Pump – O2 – Femoral Artery

TandemHeart as a Rescue Therapy for Patients With Critical Aortic Valve Stenosis

Restrospective review, 10 patients, Cardiac Arrest or Severe Refractory Cardiogenic Shock (SRCS)

<table>
<thead>
<tr>
<th></th>
<th>Before THP</th>
<th>After THP</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCWP, mm Hg</td>
<td>30.8 +/- 11.8</td>
<td>10.3 +/- 3.7</td>
<td>0.018</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>68 +/- 17</td>
<td>106 +/- 33</td>
<td>0.034</td>
</tr>
<tr>
<td>MAP, mm Hg</td>
<td>50 +/- 12</td>
<td>88 +/- 13</td>
<td>0.006</td>
</tr>
<tr>
<td>Vasopressors</td>
<td>2.1 +/- 0.7</td>
<td>0.7 +/- 0.9</td>
<td>0.002</td>
</tr>
<tr>
<td>Creat, mg/dL</td>
<td>2.0 +/- 0.9</td>
<td>1.1 +/- 0.3</td>
<td>0.002</td>
</tr>
</tbody>
</table>

8/8 to SAVR
7/8 survival at 2-43 mos
Impella 2.5 Support for Interventions in Patients with Aortic Stenosis* and LV dysfunction (NO shock patients)

- PCI = 3
- 21 pts (Retrospective)
- BAV + PCI = 8
- BAV + Arrest = 3
- BAV = 7

<table>
<thead>
<tr>
<th></th>
<th>Elective (n=17)</th>
<th>Emergent (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-Day Mortality</td>
<td>2 (12%)</td>
<td>1 (25%)</td>
</tr>
<tr>
<td>Complications</td>
<td>3 (17%)</td>
<td>1 (25%)</td>
</tr>
</tbody>
</table>

* n=5 moderate AS, n=15 severe AS
Martinez, CA et al; Catheterization & Cardiovascular Interventions; Volume 8, Issue 7, April 2012
Transapical TAVR in patients with cardiogenic shock

358 Consecutive Transapical Edwards

<table>
<thead>
<tr>
<th></th>
<th>Shock</th>
<th>No Shock</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euro Score</td>
<td>73.1 +/- 18.9%</td>
<td>36.0 +/- 18.7%</td>
<td><0.0001</td>
</tr>
<tr>
<td>STS</td>
<td>50.8 +/- 28.1%</td>
<td>16.7 +/- 12.2%</td>
<td><0.0001</td>
</tr>
<tr>
<td>CPB</td>
<td>10/21 (47.6%)</td>
<td>17/337 (5%)</td>
<td><0.0001</td>
</tr>
<tr>
<td>30-d Mortality</td>
<td>19%</td>
<td>5%</td>
<td>0.02</td>
</tr>
<tr>
<td>1-y Survival</td>
<td>46%</td>
<td>83%</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Consecutive Transapical Edwards

Shock 21 (5.9%)

Case Study

- 97yo female transfer
- Intubated in Cardiogenic Shock
- OSU Echo
 - EF 26%
 - Mild RV dysfunction
 - Moderate-severe MR
 - Severe Aortic Valve Calcification
 - Mean gradient 67 mmHg, peak 108 mmHg
 - AVA 0.33 cm²
What Next?

Palliative Care

Mechanical Therapy

Severe AS+ Cardiogenic Shock

Medical Therapy
Emergently to Cath......

- No significant Coronary Disease
- Mean Gradient 69.85 mmHg
- Deteriorating with Dual lumen pigtail across ventricle
- Amplatz exchange wire placed in ventricle
- 6Fr sheath removed, Preclose placed, 12 Fr sheath placed
- Temporary wire placed RFV
BAV Results

- Mean gradient 48.5 (69.85)
- SBP increased from 80 to 135
- Weaned off Dopamine (20mcg) prior to transfer to the floor
- Extubated several days later and discharged to Skilled Nursing Facility on Hospital Day #10 with plans to follow-up in 1 week in TAVR Clinic
Readmission....

- Admitted 4 days later with Massive Saddle Embolus; Thrombolytics, EKOS in cath lab
- ARF, BiPap, but slowly recover over four days
- Patient and family request further discussion regarding goals of care
- Code status changed from DNR CCA to DNR CC
- Patient died comfortably on hospital day #10
Summary

- Critical AS and Cardiogenic shock is a bad combination
- Three is a paucity of data to support ideal management of these patients
- Aggressive Mechanical Therapy may be of benefit in some patients
- Goals of care should be established with all patients and families
 - Palliative Consultation should be utilized in all patients