Bioabsorbable Coronary Stents

- What are they?
- Why have they been developed?
- The Clinical Trials
- Commercial Utilization and Outcomes
The History of Angioplasty and Stent Technologies

- **1970s: Balloon Angioplasty**
 - ↓ Mortality
 - ↓ Abrupt Closure
 - ↓ Stenosis
 - ↓ Clinical Events
 - ↓ Restenosis (10-20% at 1 yr)

- **1980-2000: Bare Metal Stents**
 - = Mortality
 - ↓ Revasc
 - ↓ Restenosis (<5-10% at 1 yr)

- **2000-2010: Drug Eluting Stents**
 - ↓ MI, ST*

- **2010: Present: Absorbable Stents**
 - ↓ Restenosis

*MI (myocardial infarction); ST (stent thrombosis)

The Anatomy of a Drug-Eluting Stent...

- Vessel Wall
- Drug
- Polymer
- Stent/Scaffold

- Implant
 - 2-12 Wks
 - 3-36 mo
 - 1-3 Years

- Drug Elution
 - Conventional DES
 - Bioabsorbable Polymer
 - Bioabsorbable Scaffold
The Anatomy of a Drug-Eluting Stent…

Bioabsorbable Coronary Stents

- What are they?
- Why have they been developed?
- The Clinical Trials
- Commercial Utilization and Outcomes
Why Bioabsorbable Stents?

- Progressively smaller
- Less shear
- Less injury
- Less inflammation?
- More conformable
- Less restenosis

Foin et al. 2014, Int J Cardiology

Why Bioabsorbable Stents?

- Might they retain vessel function?
- Preserve side branches?
- Preserve graft targets?
- Reduce restenosis?
- Reduce late thrombosis?
Bioabsorbable Coronary Stents

- What are they?
- Why have they been developed?
- The Clinical Trials
- Commercial Utilization and Outcomes

EVOLVE II Trial
Efficacy and Safety of a Novel Bioabsorbable Polymer-Coated, Everolimus-Eluting Coronary Stent

Patients (n = 1684) undergoing percutaneous intervention were randomized*.

* STEM: I.M., CTO, SVG, ISR excluded

Kereiakes et al. 2015, Circ Cardiovasc Interv
EVOLVE II Trial

Efficacy and Safety of a Novel Bioabsorbable Polymer-Coated, Everolimus-Eluting Coronary Stent

Patients (n = 1684) undergoing percutaneous intervention were randomized*.

With respect to death, target lesion infarction and revascularization, the SYNERGY bioabsorbable POLYMER is non-inferior to Promus DES at 1 year.

*STEMI, LM, CTO, SVG, ISR excluded

ABSORB III Trial

Everolimus-Eluting Bioabsorbable Scaffolds for Coronary Artery Disease

Patients with angina undergoing percutaneous intervention (n = 2008) were randomized*.

* ACS, complex lesions excluded
Patients with angina undergoing percutaneous intervention (n = 2008) were randomized.*

With respect to death, target lesion infarction and revascularization, the Absorb bioabsorbable SCAFFOLD is non-inferior to Xience DES at 1 year.

* ACS, complex lesions excluded
The Clinical Trials….

NON-INFERIOR
FDA Approved

2-12 Wks

Conventional DES

2-12 Weeks

3 - 36 mo

Bioabsorbable Polymer

1-3 Years

Bioabsorbable Scaffold

FDA Approved Bioabsorbable Stents

EVOLVE Trial

- Boston Scientific
- Synergy Stent
- Bioabsorbable Polymer
- FDA Approved

ABSORB Trial

- Abbott
- Absorb Stent
- Bioabsorbable Scaffold
- FDA Approved

Non-inferior to current generation drug eluting stents
Bioabsorbable Coronary Stents

- What are they?
- Why have they been developed?
- The Clinical Trials
- Commercial Utilization and Outcomes

Broader Experience Raises Concerns…

1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta-analysis

Gregg W Stone, Brooke Gap, Takeshi Kimura, Dean Kandzari, Stephen G Ellis, Yoshikazu Ohama, Wai-Fung Cheung, Jennifer Jones-McMains, Xiaoku Su, Zhou Zhang, Patrick W Serruys

- Increase 12-mo rate of stent thrombosis
 - RR 2.09 (0.92-4.75)

Safety and efficacy outcomes of first and second generation durable polymer drug eluting stents and biodegradable polymer biolimus eluting stents in clinical practice: comprehensive network meta-analysis

- 29% increase in myocardial infarction

Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting stents for coronary artery disease: mixed treatment comparison meta-analysis

- Increased mortality after 1 year
 - HR 1.52 (1.02 – 2.22)
The History of Angioplasty and Stent Technologies

1970s: Balloon Angioplasty
↓ Mortality
↓ Abrupt Closure
↓ Stenosis
↓ Clinical Events
↓ Restenosis (10-20% at 1 yr)

1980-2000 Bare Metal Stents
= Mortality
↓ Revasc
↓ Restenosis (< 5-10% at 1 yr)

2000-2010 Drug Eluting Stents

2010- Present Absorbable Stents
? Mortality
? MI, ST*
? Restenosis

*MI (myocardial infarction); ST (stent thrombosis)

Conclusions

Advantages
- May reduce restenosis
- Vessel function
- Side-branch
- Bypass-targets

Disadvantages
- Lower device success
- Simple lesions
- More fragile
- Observational concerns

These are early generation technologies
Concepts remain valid
Conservative adoption while awaiting device improvements.
THANK YOU

Scott M Lilly MD PhD
Interventional Cardiology
The Ohio State University
scott.lilly@osumc.edu