Adult Congenital Heart Disease: What All Clinicians Should Know
Sharon L. Roble, MD, FACC

DISCLOSURES

- I have no disclosures relevant to today’s talk
Why should clinicians know/care about congenital heart disease?

Classification of Congenital Heart Disease

- Right versus Left-sided lesions
 - According to side of heart affected
- Cyanotic versus Acyanotic lesions
 - May be difficult to use these classifications as severity of disease may affect degree of cyanosis
- Simple/Moderate/Complex
Atrial Septal Defects (ASD)

- 5 Types
 - Secundum
 - Primum
 - Sinus venosus
 - Coronary sinus
 - Patent foramen ovale
- Right sided lesions—increased blood flow across defect results in right atrial and ventricular enlargement
Types of Repair

- Catheter Closure
 - Must have rim of tissue around defect for device to attach
- Surgical Closure
 - Sinus venosus ASDs
 - Primum ASDs
 - Large secundum ASDs with inadequate tissue ring
 - Relationship of aortic valve to defect
Septal Occluder Devices

Potential Complications

- Device migration
- Erosion
 - Aorta
 - Atrium
- Atrial arrhythmias
Ventricular Septal Defects (VSD)

- **Inlet**
 - Separates mitral and tricuspid valves
- **Muscular (trabecular)**
 - Attachments of tricuspid leaflets outward to apex and upward to the crista supraventricularis
- **Outlet**
 - Crista to pulmonic valve
 - Smooth walled structure
- **Membranous**
 - Fibrous portion of septum just below aortic valve
 - Small

Physiologic Effects of VSDs

- Shunt flow is dependent on size of defect and relative pulmonary and systemic vascular resistance
 - Blood flows towards lowest resistance
 - SVR>PVR \rightarrow left-to-right shunting
 - PVR>SVR \rightarrow right-to-left shunting \rightarrow CYANOSIS
- Shunt flow is from left ventricle to right ventricular outflow tract \rightarrow little effect on right atrial/ventricular size.
- With large defects \rightarrow increased pulmonary blood flow \rightarrow increased pulmonary vascular resistance \rightarrow RVH
Estimating Pulmonary Artery Pressures

- Simplified Bernoulli Equation = 4 x Vm²
 - Assumes no intracardiac shunting
 - Right ventricular pressure
- In VSDs, the right ventricular pressure is the left ventricular pressure minus the gradient across the defect
 - Systemic systolic blood pressure-VSD gradient (4 x Vm²) where Vm is the velocity across the defect
- In other situations of intracardiac shunting, should only report the right ventricular pressure

Atrioventricular Canal Defects (Endocardial Cushion Defects)

- Spectrum of defects
 - Partial AV canal—primum ASD + cleft mitral valve
 - Complete AV canal defect with one common (5 leaflet) AV valve and both atrial and ventricular septal defects
- Atrioventricular valves are at same level
- Will always have “cleft” in mitral valve
Atrio-ventricular canal defect
Tetralogy of Fallot

- Ventricular septal defect
- Varying degrees of pulmonic stenosis
 - Valvar or subvalvar
 - Branch pulmonary stenosis
- Overriding aorta
- Right ventricular hypertrophy
- Pentalogy of Fallot: TOF + ASD

Long-term Complications

- Right ventricular enlargement/failure
- Ventricular arrhythmias
- Residual intracardiac shunting
- Branch pulmonary artery stenosis
- Aortic dilatation
Coarctation of the Aorta

- Due to narrowing in distal aortic arch/proximal descending aorta near insertion site of ductus.
- May be discrete lesion or involve a longer segment or diffuse arch hypoplasia.
- Several types of surgical repair
 - End-to-end anastomosis
 - Tube graft
 - Subclavian flap repair
 - Patch aortoplasty
 - Interposition ("jump") graft

Types of Repair

A. B. C. D. E.
Imaging

- **Echo**
 - Subcostal imaging of the descending aorta is imperative
 - Suprasternal notch views are also very important (provide best angle of interrogation of the coarctation)
 - Pulse and continuous wave doppler
- **MRI**
- **CT**
- **Angiography**
 - Done only if intervention being performed
Aortic Valve Disease

- Bicuspid aortic valves are the most common congenital heart disease occurring in ~2% of the population
- Frequently associated with an aortopathy regardless of degree of valvular disease
- Screening of first degree relatives
Complex Congenital Heart Disease

- Examples: Single ventricle (Fontan), Transposition of the great arteries (D- or L-), Truncus arteriosus
- Ideally should be performed at facility with congenital experience (sonographer and cardiologist)
- Single ventricle physiology
 - Glenn: Anastomosis of SVC to pulmonary artery
 - Fontan (various types): Anastomosis of IVC flow to pulmonary artery

Bidirectional Glenn
Fontan Operation

EXTRACARDIAC

LATERAL TUNNEL

D-Transposition of Great Arteries

KEY
SVC – Superior Vena Cava
IVC – Inferior Vena Cava
RA – Right Atrium
RV – Right Ventricle
MPA – Main Pulmonary Artery
Aoa – Aorta
LA – Left Atrium
LV – Left Ventricle
Mustard or Senning Operation

- "Atrial Switch"
 - Baffling systemic venous return to mitral valve → morphologic LV → PA
 - Pulmonary venous return then flows around baffle to tricuspid valve → morphologic RV → aorta
 - Mustard: Baffle created from pericardium.
 - Senning: Baffle created from atrial tissue.

“Arterial Switch”

- LeCompte maneuver
L-TGA (Congenitally Corrected or Ventricular Inversion)

Key:
- RA - Right Atrium
- RV - Right Ventricle
- PA - Pulmonary Artery
- LA - Left Atrium
- LV - Left Ventricle
- Ao - Aorta
- DAO - Descending Aorta

THANK YOU