Cardiogenic Shock: Updates and New Treatment Strategies

Sitaramesh Emani, MD
Raymond Magorien, MD

Disclosures

S. Emani:
Consultant:
- Abbott
- Respocardia
- CHF Solutions
- Cardionomics
Grant Support:
- Abbott
Travel Reimbursement
- Abiomed
- Syncardia

R. Magorien:
None

This presentation will include off-label therapies
Cardiogenic Shock (CS) Outcomes

- 81% mortality with untreated/inadequately treated CS
- 27-51% mortality with appropriately treated CS
- **Acute MI** is the most common cause of CS
- Complex presentations and causes make treatment challenging
- Underscores need for improved shock strategies

What is Shock?

A clinical scenario with signs of end-organ hypoperfusion

Related to multiple factors:

- Perfusion gradients
- Tissue oxygen supply and demand
- Neurohormonal imbalances

Cardiogenic Shock

- Shock arising from a primary cardiac cause
- Major manifestation is low cardiac output

- No universal cut-off for CO/CI
 - <1.8
 - <2
 - <2.2

 Shock has been observed with all ranges

- No EF cut-off for cardiogenic shock
Cardiac Power Output

- Analysis from SHOCK trial showed correlation to mortality
- Better than other hemodynamic parameters
- CPO ≤ 0.53 W had sensitivity and specificity of 0.66
- Clinically, CPO < 0.6 used as a cut point

\[CPO = \frac{\text{Cardiac Output} \times \text{MAP}}{451} \]

OSU Working Definition of Cardiogenic Shock

HYPOTENSIVE CARDIOGENIC SHOCK:
SBP < 90 mmHg for > 30 minutes and evidence of decreased organ perfusion or use of catecholamines to maintain SBP > 90 mmHg
 - Especially if >1 inotrope or vasopressor

NON-HYPOTENSIVE SHOCK:
Low cardiac index in setting of normal systemic pressures & high SVR
Defining Cardiogenic Shock

Definition of CS is not dependent on invasive hemodynamics

However – use of invasive hemodynamics is helpful:

- Characterize hemodynamic profile
- Allows better selection of initial therapies
- Allows monitoring of response to therapies

Use of a PA catheter is encouraged!

Decline in use of PA catheters after ESCAPE

Mortality Trends with PA Catheter

Timing is Everything

Early recognition & implementation of therapy improves outcomes

Factors associated with increased survival:

- **Recognition** within 12 hours of CS
- Use of **invasive hemodynamics**
- **Early therapies** to stabilize hemodynamics
- Utilization of “**shock networks**” to escalate care
Timing is Everything

Learning from the Past

- Prior to 2006 Ohio State had no specific STEMI protocol
- “STEMI” pager carried by interventional fellows (initiated in 2004)
Key strategies associated with reduced D2B times

<table>
<thead>
<tr>
<th>STRATEGIES</th>
<th>MINUTES SAVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate lab with EM Physicians (23% do this)</td>
<td>8.2 minutes</td>
</tr>
<tr>
<td>Activate w/ single call from ED to operator (14%)</td>
<td>13.8 minutes</td>
</tr>
<tr>
<td>Activate on pre-hospital ECG while patient enroute (9%)</td>
<td>15.4 minutes</td>
</tr>
<tr>
<td>Expectation that cath team arrive 20 - 30 minutes (13%)</td>
<td>19.3 minutes</td>
</tr>
<tr>
<td>Provide real time feedback to ED/lab (42%)</td>
<td>8.6 minutes</td>
</tr>
<tr>
<td>Attending cardiologist always on site (4%)</td>
<td>14.6 minutes</td>
</tr>
</tbody>
</table>

Bradley et al, NEJM, 2006

Ohio State Experience

In 2006, Developed *in-house* Algorithm for STEMI Care
- Dedicated STEMI Hotline
- Overhead “STEMI Alert”
- Allows ED physician to activate cath lab
- In-house team assembles in cardiac catheterization lab immediately (MD’s, RN’s, RT’s, Pharmacy)
- Interventional Cardiology Team assembled within 20-25 minutes
“OSU STEMI Alert” 366-8111

Red Phone, OSU Transfer Center

- ED or EMS Activation of the OSU Cath Lab
- 3-way call ED (or EMS), OSU, MedFlight
- In-House cath lab team immediately available
- Interventional Cardiology team arrives within 20 minutes during off hours and procedure starts upon arrival
- D2B average for August 2019 was 27.5 minutes, including off hour cases

Ohio State….Where we are:

- Activate Lab with ED Physicians
- Field Activations (EMS)
- Activate Lab with Single Phone Call
- Activate based on Pre-Hospital EKG
- Expect Team to arrive in 20-30 min
- Provide real-time feedback
- Attending Cardiologist on site
- D2B 40.64 min average FY19
- D2D2B 101.82 min average FY19
- EMS Alerts D2B 22.4 min average FY19
- Education Efforts
 - EMS
 - Nursing
 - MD/CME
- Quality Assurance
 - Immediate feedback
 - D2B committee
Pathophysiology of Cardiogenic Shock
A Cardio-Metabolic Cascade

Continuum of Cardiogenic Shock

Opportunity for meaningful intervention
Salvage Therapy
Treating Cardiogenic Shock

SCAI Classification of Shock

- **Stage A: At Risk**. A patient who is not currently experiencing signs or symptoms of cardiogenic shock, but is at risk for its development. These patients may include those with acute myocardial infarction, acute and/or acute on chronic heart failure symptoms.

- **Stage B: Beginning**. Cardiogenic Shock. A patient who has clinical evidence of relative hypotension or tachycardia without hypoperfusion.

- **Stage C: Classic**. Cardiogenic Shock. A patient that manifests with hypoperfusion that requires intervention (inotropes, pressor, or mechanical support, ECMO) beyond bolus resuscitation to reestablish perfusion. These patients typically present with relative hypotension.

- **Stage D: Deteriorating or Down**. A patient that is similar to category C but is getting worse. They have failure to respond to initial interventions.

- **Stage E: Extremis**. A patient with circulatory collapse, frequently (but not always) in refractory cardiac arrest with ongoing cardiopulmonary resuscitation (CPR) or are being supported by multiple simultaneous acute interventions including ECMO-facilitated CPR. These are patients with multiple clinicians at bedside laboring to address multiple simultaneous issues related to the lack of clinical stability of the patient.

Treating Cardiogenic Shock

- Treat acute/reversible causes

Escalating Support

- Inotropes
- IABP
- Impella CP
- Impella 5.0 Tandem Heart
- CentriMag
- ECMO ±RV Support
- ±LV Vent

Levels of Flow Support

Escalating Support

- IABP [0.5-1.5 L/min] (CO ↑ 20-30%)
- Impella CP [~3 L/min] Impella 5.0 [~5 L/min]
- Tandem Heart [~5 L/min]
- CentriMag [10 L/min]
- ECMO [7-10 L/min]
IABP

- "Traditional" tMCS solution with mixed evidence

- IABP-SHOCK-II Trial
 - IABP use in AMI
 - No improvement in 30 day or 1 year mortality vs medical therapy
 - High cross-over rate, no hemodynamics, no prescriptive algorithm on IABP use

- Clinically, IABP still felt to be useful in some situations

IABP

Timing May Be Everything

Follow up study showed improvement in 30 day mortality with IABP if inserted <1 hour of shock onset

- Single-center, retrospective study
- No difference between ACS and non-ACS patients

Shift to metabolic shock profile when used late?

IABP Benefits

- Relatively easy to insert
 - Including alternative access options
- Relatively easy to manage / Lots of experience
- Anticoagulation may be less challenging to manage
 - Including option for minimal/no anticoagulation
- Relatively cheaper than other devices
- By fair comparison, no strong mortality benefit with other devices

IABP Drawbacks

- Limited hemodynamic support
 - Better for SVR reduction?
- Limited by heart rate and rhythm
- Especially with HR >120
- Univentricular support
 - No “RV” IABP
- Aortic valve pathology can complicate/limit utility
Considerations with other tMCS options

- Presence of LV thrombus & AS limits pVAD (Impella)
- TandemHeart requires trans-septal approach (in LV bypass configuration)
- Sheath/cannulae sizes increase with more flow support
 - May require surgical insertion/removal
- Hemolysis is a concern with many devices
- Anticoagulation is more critical, and more difficult to maintain
- FDA labeling for most tMCS is short term (i.e. <6 hours)

Choices, choices

- Minimal data to suggest superiority of a single strategy
- Evaluation of etiology, concurrent therapies, and end-goals are key
- Use of hemodynamics can be useful
- Several published algorithms available
OSU Cardiogenic Shock Algorithm

Shock Suspected

Notify Shock Team

Massive Pulmonary Embolism

1. OSU Cardiogenic Shock Algorithm
2. Hypovolemia (RA < 15 mmHg or PCWP or LVEDP < 18)
3. Predominantly RV Failure (RA > 15 mmHg, PCWP or LVEDP < 18)
4. Predominantly LV Failure (RA ≤ 15 mmHg, PCWP or LVEDP > 18)
5. Biventricular Failure (RA > 15 mmHg, PCWP or LVEDP > 18)
6. Temporary left-sided support
7. Temporary right-sided support

Testing

- Echocardiogram – evaluate function/structure
- PA catheter – leave in (calculate CI)
- Coronary angiogram ± revascularization and LVEDP
- Labs: CBC, electrolytes, creatinine, LFT, ABG with lactate, cardiac troponin level as appropriate
- Chest X-ray

CI > 2.2 consider non-cardiac etiology and intra-cardiac shunt

CI = 2.27

Hypovolemia and/or persistent VT/VF

Ultrafiltration and/or LV ECMO

Hypoxemia

CI ≤ 1.5

Predominantly LV Failure (RA ≤ 15 mmHg, PCWP or LVEDP > 18)

CI = PaPi > 1.57

Temporary left-sided support

For evaluation hemodynamic status in 20 minutes

For evaluate hemodynamic status in 20 minutes

OSU Cardiogenic Shock Algorithm

Shock Suspected

Notify Shock Team

Massive Pulmonary Embolism

1. OSU Cardiogenic Shock Algorithm
2. Hypovolemia (RA < 15 mmHg or PCWP or LVEDP < 18)
3. Predominantly RV Failure (RA > 15 mmHg, PCWP or LVEDP < 18)
4. Predominantly LV Failure (RA ≤ 15 mmHg, PCWP or LVEDP > 18)
5. Biventricular Failure (RA > 15 mmHg, PCWP or LVEDP > 18)
6. Temporary left-sided support
7. Temporary right-sided support

Testing

- Echocardiogram – evaluate function/structure
- PA catheter – leave in (calculate CI)
- Coronary angiogram ± revascularization and LVEDP
- Labs: CBC, electrolytes, creatinine, LFT, ABG with lactate, cardiac troponin level as appropriate
- Chest X-ray

CI > 2.2 consider non-cardiac etiology and intra-cardiac shunt

CI = 2.27

Hypovolemia and/or persistent VT/VF

Ultrafiltration and/or LV ECMO

Hypoxemia

CI ≤ 1.5

Predominantly LV Failure (RA ≤ 15 mmHg, PCWP or LVEDP > 18)

CI = PaPi > 1.57

Temporary left-sided support

For evaluation hemodynamic status in 20 minutes

For evaluate hemodynamic status in 20 minutes

Improving Outcomes in Cardiogenic Shock

Ways to improve outcomes:
- Use algorithmic approach
- Form a Cardiogenic Shock Team

Single Center Experience (Fairfax, VA)
- 2016 – 47% survival (30-day)
- 2017 – 58% survival
- 2018 – 77% survival
Summary

- Cardiogenic Shock can lead to poor outcomes
- Cardiogenic Shock is a complex, dynamic process

- Early recognition is paramount
 - Hemodynamic profiles and shock stages can assist in characterization
 - Delayed recognition results in undesirable/unrecoverable situations

- Many therapeutic choices
 - Multiple factors can govern appropriate therapy

- Shock Teams and Shock Networks can improve outcomes
Special Thanks

- Dixie Davenport
- Georgia Weilbacher
- Dean Boudoulas
- Bryan Whitson
- Veena Satyapriya
- Ravi Tripathi

Thank You

@RameshEmani