Percutaneous Mitral Valve Therapies

Jeffrey J. Popma, MD
Director, Interventional Cardiology
Clinical Services
Beth Israel Deaconess Medical Center
Associate Professor of Medicine
Harvard Medical School
Boston, MA
Within the past 12 months, I have had a financial interest/arrangement or affiliation with the organization(s) listed below.

<table>
<thead>
<tr>
<th>Physician Name</th>
<th>Company/Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffrey J. Popma, MD</td>
<td>Research Grants: Cordis, Boston Scientific, Medtronic, Abbott-Guidant, eV3, LabCoat</td>
</tr>
<tr>
<td></td>
<td>Medical Advisory Board: Cordis, Boston Scientific, Abbot Vascular</td>
</tr>
</tbody>
</table>
Transcatheter Mitral Valve

Mitral Valve Pathology

Mitral Valve Therapies

 Edge-edge repair

 Chordal Shortening

 Coronary Sinus Annuloplasty

 Direct Annuloplasty

 MV Replacement
Device Landscape 2011
Percutaneous MV Repair

Edge-to-edge
- Evalve MitraClip*

Chordal Shortening
- Cardiosolutions
- Mitra-Spacer*
- NeoChord
- Valtech VChordal

Coronary sinus Annuloplasty
- Cardiac Dimensions Carillon*
- Edwards Monarch*
- Viacor PTMA*
- Cerclage annuloplasty

MV replacement
- EndoValve
- CardiAQ
- Valtech Cardiovalve
- ValveXchange

Direct Annuloplasty
- Mitralign Bident*
- GDS Accucincher*
- ReCor (US)*
- Quantum Cor (RF)
- Valtech Cardioband
- Micardia enCor

*In patients
First Question: Degenerative or Functional?

Degenerative mitral valve regurgitation: best practice revolution

- FED
- FED+
- Forme Fruste
- Barlow’s

Leaflet Tissue
Second Question: What is the Surgical Risk (STS PROM)?

FED

FED+

Forme Fruste

Barlow’s

Increasing Repair Difficulty

Percutaneous Methods for Mitral Valve Repair → Functional MR

- **Leaflet Coaptation**
 - Edge-to-Edge Repair
 - Alfieri Stitch

- **Annular Reshaping**
 - Cinching
 - Annuloplasty
Percutaneous Mitral Valve Repair

MitraClip® System
The MitraClip: Global Experience
(through 4/20/2011)

~3,135 patients
at ~80 hospitals in EU
and 40 clinical trial sites in
the U.S. have been treated
with the MitraClip device

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVEREST I</td>
<td>55</td>
</tr>
<tr>
<td>EVEREST II Roll-in</td>
<td>60</td>
</tr>
<tr>
<td>EVEREST II HRR</td>
<td>78</td>
</tr>
<tr>
<td>EVEREST II Randomized</td>
<td>184</td>
</tr>
<tr>
<td>REALISM (Continued Access)</td>
<td>571</td>
</tr>
<tr>
<td>Commercial use (EU)</td>
<td>2187</td>
</tr>
</tbody>
</table>

Source: Abbott Vascular
EVEREST II Randomized Clinical Trial

279 Patients enrolled at 37 sites
Significant MR (3+-4+)
73% DMR, 27% FMR
Specific anatomical criteria
Randomized 2:1

Device Group
MitraClip System
N=184

Control Group
Surgical Repair or Replacement
N=95

Echocardiography Core Lab and Clinical Follow-Up
Baseline, 30 days, 6 months, 1 year, 18 months, and annually through 5 years

Feldman T et al. NEJM 2011;364:1395-406
EVEREST II RCT: Patient Flow

Randomized Cohort
n=279

Device Group
n=184
- Treated
n=178

Acute Procedural Success
Achieved
n=137 (77.0%)

Acute Procedural Success
Not Achieved
n=41 (23.0%)*
*20 of 41 no implant

28 had MV surgery
9 had MV surgery
37/178 total (20.8%)

30 days
n=136
99% Clinical Follow-up

12 months
n=134
98.5% Clinical Follow-up
98% Echo Follow-up

Surgical Group
n=95
- Treated
n=80
(86% MV repair)

Per Protocol

Feldman T et al. NEJM 2011;364:1395-406
EVEREST II RCT: Primary Safety Endpoint

Per Protocol Cohort

<table>
<thead>
<tr>
<th>30 Day MAE, non-hierarchical</th>
<th># Patients experiencing event</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device Group (n=136)</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
</tr>
<tr>
<td>Major Stroke</td>
<td>0</td>
</tr>
<tr>
<td>Re-operation of Mitral Valve</td>
<td>0</td>
</tr>
<tr>
<td>Urgent / Emergent CV Surgery</td>
<td>0</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>0</td>
</tr>
<tr>
<td>Renal Failure</td>
<td>0</td>
</tr>
<tr>
<td>Deep Wound Infection</td>
<td>0</td>
</tr>
<tr>
<td>Ventilation >48 hrs</td>
<td>0</td>
</tr>
<tr>
<td>New Onset Permanent Atrial Fib</td>
<td>0</td>
</tr>
<tr>
<td>Septicemia</td>
<td>0</td>
</tr>
<tr>
<td>GI Complication Requiring Surgery</td>
<td>1 (0.7%)</td>
</tr>
<tr>
<td>All Transfusions ≥2 units*</td>
<td>12 (8.8%)</td>
</tr>
<tr>
<td>TOTAL % of Patients with MAE</td>
<td>9.6%</td>
</tr>
</tbody>
</table>

p<0.0001

p<0.0001 if include Major Bleeding only (95% CI 34.4%, 60.4%)

Feldman T et al. NEJM 2011;364:1395-406
EVEREST II: Mitral Regurgitation Grade
Baseline, 1 and 2 Years (matched)
Intention to Treat

* Within group difference (p<0.05); † Between group difference at 1 year (p<0.05); ‡ Between group difference at 2 year (p<0.05)

Ted Feldman, ACC 2011 Late Breaking Trial
EVEREST II: LV Volumes

Baseline, 1 and 2 Years (matched)

Intention to Treat

* * Within group difference (p<0.05)
† † Between group difference at 1 year (p<0.05)
‡ ‡ Between group difference at 2 year (p<0.05)

LV End Diastolic Volume

<table>
<thead>
<tr>
<th></th>
<th>BL</th>
<th>1 Yr</th>
<th>2 Yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percutaneous</td>
<td>157</td>
<td>133</td>
<td>124</td>
</tr>
<tr>
<td>Surgery</td>
<td>158</td>
<td>119</td>
<td>110</td>
</tr>
</tbody>
</table>

LV End Systolic Volume

<table>
<thead>
<tr>
<th></th>
<th>BL</th>
<th>1 Yr</th>
<th>2 Yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percutaneous</td>
<td>62</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td>Surgery</td>
<td>60</td>
<td>55</td>
<td>50</td>
</tr>
</tbody>
</table>

Ted Feldman, ACC 2011 Late Breaking Trial
EVEREST II: Kaplan-Meier Freedom from Death Intentation to Treat

Surgery = 95.0%
Percutaneous = 94.9%
p=0.78

Surgery = 91.1%
Percutaneous = 89.8%
p=0.95

At Risk: 0 Days 6m 1yr 1.5yr 2yr 3yr
Percutaneous 184 166 163 153 133 52
Surgery 95 78 74 71 63 25

Ted Feldman, ACC 2011 Late Breaking Trial
EVEREST II: Landmark Analysis of Kaplan-Meier Freedom from MV Surgery (Percutaneous)/Re-operation (Surgery) Intention to Treat

![Graph showing Kaplan-Meier analysis of freedom from surgery or reoperation comparing surgery and percutaneous procedures.](image)

- **Surgery**: 98.7% Freedom from Surgery (Device) or Reoperation (Surgery) vs. 95.6% for Percutaneous, with a p-value of 0.52.
- **Percutaneous**: 96.3% Freedom from Surgery (Device) or Reoperation (Surgery) vs. 97.3% for Surgery, with a p-value of 0.32.

At Risk

<table>
<thead>
<tr>
<th>Time</th>
<th>Percutaneous</th>
<th>Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Days</td>
<td>184</td>
<td>95</td>
</tr>
<tr>
<td>6m</td>
<td>138</td>
<td>77</td>
</tr>
<tr>
<td>1yr</td>
<td>131</td>
<td>72</td>
</tr>
<tr>
<td>1.5yr</td>
<td>124</td>
<td>69</td>
</tr>
<tr>
<td>2yr</td>
<td>109</td>
<td>61</td>
</tr>
<tr>
<td>3yr</td>
<td>44</td>
<td>24</td>
</tr>
</tbody>
</table>

Ted Feldman, ACC 2011 Late Breaking Trial
EVEREST II: NYHA Functional Class
At Baseline, 1 and 2 Years (matched)
Intention to Treat

* Within group difference (p<0.05)
† Between group difference at 1 year (p<0.05)
‡ Between group difference at 2 year (p<0.05)
EVEREST II RCT MitraClip Arm
MR Reduction by Etiology

DMR Cohort
- Baseline: 3+/4+ 34.5%
- 12 Months: 1+ 11.5%
- 2+ 36.8%
- 3+/4+ 17.2%

FMR Cohort
- Baseline: 3+/4+ 40.6%
- 12 Months: 1+ 12.5%
- 2+ 25.0%
- 3+/4+ 21.9%

n=135 (DMR Cohort)
=87 (12 Months DMR Cohort)
n=49 (FMR Cohort)
=32 (12 Months FMR Cohort)

Ted Feldman, TCT 2010
EVEREST II RCT MitraClip Arm
Left Ventricular Function by Etiology
LV End Diastolic and End Systolic Volumes

DMR Cohort
n=88, matched data

FMR Cohort
n=30, matched data

LVEDV
LVESV

p<0.0001
p=0.002
p=0.0002
p=0.04

Baseline
12 Months

Ted Feldman, TCT 2010
EVEREST II RCT MitraClip Arm
NYHA Functional Class by Etiology

DMR Cohort
n=93, matched data

FMR Cohort
n=31, matched data

<table>
<thead>
<tr>
<th>NYHA Functional Class</th>
<th>Baseline</th>
<th>12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/II</td>
<td>97.8%</td>
<td>96.7%</td>
</tr>
<tr>
<td>III</td>
<td>22.2%</td>
<td>33.3%</td>
</tr>
<tr>
<td>IV</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Differences are significant at p<0.0001
EVEREST II High Surgical Risk Cohort

Enrollment

EVEREST II High Surgical Risk Cohort
N = 372

EVEREST II High Surgical Risk Trial*
N = 78 Enrolled

REALISM High Surgical Risk Trial^*
N = 294 Enrolled

1 Year
N = 78

1 Year
N = 133

EVEREST II High Surgical Risk Cohort
With 1 Year Follow-Up
N = 211

* EVEREST HR defined by predicted surgical mortality ≥12% using STS risk calculator or surgeon estimate from co-morbidities

^ ACCESS EU high risk defined by EuroSCORE ≥20%

Ted Feldman. EuroPCR 2011
EVEREST II High Surgical Risk Cohort

Mitral Regurgitation Grade