Primary Therapy for Asymptomatic High-Risk Long QT Syndrome Patients Should NOT Be an ICD

Barry London, MD PhD
University of Pittsburgh Medical Center
Pittsburgh, PA

International Symposium of Inherited Arrhythmia Disorders and Hypertrophic Cardiomyopathy: A Comprehensive Update and Current Controversies
05/05/11

Nothing to Disclose
ICD Guidelines

• ACC/AHA Guidelines (Circulation 2008;117:2820-40)
 – Class IIA: ICD implantation is reasonable to reduce SCD in patients with long-QT syndrome who are experiencing syncope and/or VT while receiving beta blockers. (Level of Evidence: B)
 – Class IIB: ICD therapy may be considered for patients with long-QT syndrome and risk factors for SCD. (Level of Evidence: B)

• Medicare Coverage of ICDs
 – Documented familial or inherited conditions with a high risk of life-threatening VT, such as long QT syndrome or hypertrophic cardiomyopathy (04/01/05)
Inherited Arrhythmopathies: ICD Guidelines

- Long QT syndrome risk factors
 - Aborted SCD
 - Recurrent symptoms (syncope, VT) on β-blockade
 - Jervell & Lange-Nielsen, Very long QTc, Gender, age, Family Hx SCD

(Goldenberg and Moss, JACC 2008;51:2291)
Risk Factors Are Often Unclear

• QTc > 500 msec
 – QTc not constant
 – Varies with [K⁺], exercise, etc.

• Gender and Age
 – QTc is longer in women after puberty, boys before
 – If asymptomatic at age >50 or >60, ?benefit > risk

• Family History of Sudden Cardiac Death
 – Conflicting data on effect on risk

• High risk mutations
 – e.g. KvLQT1 pore and transmembrane domain
All Long QT Is Not the Same

<table>
<thead>
<tr>
<th>Locus</th>
<th>Protein</th>
<th>Current</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQT1</td>
<td>KvLQT1</td>
<td>↓ I_{Ks}</td>
<td>11p15.5</td>
</tr>
<tr>
<td>LQT2</td>
<td>HERG</td>
<td>↓ I_{Kr}</td>
<td>7q35-36</td>
</tr>
<tr>
<td>LQT3</td>
<td>SCN5A</td>
<td>↑ I_{Na}</td>
<td>3p21</td>
</tr>
<tr>
<td>LQT4</td>
<td>Ankyrin-B</td>
<td>↑ I_{Na}</td>
<td>4q25-27</td>
</tr>
<tr>
<td>LQT5</td>
<td>minK</td>
<td>↓ I_{Ks}</td>
<td>21q21-22</td>
</tr>
<tr>
<td>LQT6</td>
<td>MiRP1</td>
<td>↓ I_{Kr}</td>
<td>21q21-22</td>
</tr>
<tr>
<td>LQT7</td>
<td>Andersens</td>
<td>↓ I_{K1}</td>
<td>17q23</td>
</tr>
<tr>
<td>LQT8</td>
<td>Timothy</td>
<td>↑ I_{Na}</td>
<td>12p13.3</td>
</tr>
<tr>
<td>LQT9</td>
<td>Caveolin3</td>
<td>↑ I_{Na}</td>
<td>3p25.3</td>
</tr>
<tr>
<td>LQT10</td>
<td>SCN4B</td>
<td>↑ I_{Na}</td>
<td>11q23.3</td>
</tr>
<tr>
<td>LQT11</td>
<td>Yotiao</td>
<td>↓ I_{Ks}</td>
<td>7q21-22</td>
</tr>
</tbody>
</table>
There Are Other Treatments

• Avoid medications that prolong QT interval
• Avoid competitive sports
• Pharmacological
 – LQT1: β-blockers
 – LQT2: K⁺ supplementation and aldactone
 – LQT3: Mexilitine; Ranolazine
• VAD and Heart Transplant
LQT1: Beta-Blockers Are Effective

- KCNQ1/KCNE1 K⁺ channels encode I_{Ks}; Mutations of KCNQ1/KvLQT1 cause LQT1 form of LQTS
- β-Blockers are more effective in LQT1 than LQT2 or LQT3 (Priori et al., JAMA 2004;292:1341-44)
ICDs Have Risks

• Implantation
 – Bleeding
 – Infection
 – Tamponade

• Late complications
 – Inappropriate shocks
 – Shocks for VT that would have self-terminated
 – Infection
 – Lead failure and risks of explantation
 – Premature device failure and routine replacement
 – Limit quality of life: profession, activities, insurance
Escalating Numbers of Patients

- Genetic screening programs
 - Families of affected subjects

- Clinical screening programs
 - School athletes
 - Children

- Cost
 - ICDs for relatively low risk subjects for a lifetime
 - Cost effectiveness analyses?
Summary

• ICDs are indicated for symptomatic subjects on alternate therapies at high risk for sudden death
• ICDs are appropriate for some asymptomatic patients
• We need better ways to accurately determine the risk of sudden cardiac death vs. ICD risk in asymptomatic patients with LQTS – Clinical, genetic, etc.
• We need prospective trials to assess guidelines, and mechanisms to enforce best practices