Basics of Structure/Function of Sodium and Potassium Channels

Barry London, MD PhD

University of Pittsburgh Medical Center
Pittsburgh, PA

International Symposium of Inherited Arrhythmia Disorders and Hypertrophic Cardiomyopathy: A Comprehensive Update and Current Controversies

05/05/11

Nothing to Disclose
15 Year Old with Syncope
Baseline Holter Tracing
Nightmare at 3:30 AM
Cardiac Arrhythmias

• Major cause of morbidity and mortality
• At least 250,000 sudden deaths per year in US
• Treatment is inadequate
• Most are associated with structural heart disease (MI, CHF)
• A lot is known about rare syndromes simple inheritance (long QT & Brugada syndromes)
Inherited Arrhythmopathies

- Long QT Syndrome
- Short QT Syndrome
- Brugada Syndrome
- Catecholaminergic Polymorphic VT
- Familial Atrial Fibrillation
- Progressive Conduction Defects (Lev, Lenegre)
- WPW
Long QT Syndrome Loci/Genes

<table>
<thead>
<tr>
<th>Locus</th>
<th>Protein</th>
<th>Gene</th>
<th>Current Current</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQT1</td>
<td>KvLQT1</td>
<td>KCNQ1</td>
<td>↓ (I_{Ks})</td>
<td>11p15.5</td>
</tr>
<tr>
<td>LQT2</td>
<td>HERG</td>
<td>KCNH2</td>
<td>↓ (I_{Kr})</td>
<td>7q35-36</td>
</tr>
<tr>
<td>LQT3</td>
<td>Na(_v)1.5</td>
<td>SCN5A</td>
<td>↑ (I_{Na})</td>
<td>3p21</td>
</tr>
<tr>
<td>LQT4</td>
<td>Ankyrin-B</td>
<td>ANK2</td>
<td>↑ (I_{Na}) ?</td>
<td>4q25-27</td>
</tr>
<tr>
<td>LQT5</td>
<td>KCNE1</td>
<td>KCNE1</td>
<td>↓ (I_{Ks})</td>
<td>21q21-22</td>
</tr>
<tr>
<td>LQT6</td>
<td>MiRP1</td>
<td>KCNE2</td>
<td>↓ (I_{Kr}) ?</td>
<td>21q21-22</td>
</tr>
<tr>
<td>LQT7</td>
<td>Kir2.1</td>
<td>KCNJ2</td>
<td>↓ (I_{K1})</td>
<td>17q23</td>
</tr>
<tr>
<td>LQT8</td>
<td>Ca(_v)1.2</td>
<td>CACNA1C</td>
<td>↑ (I_{Ca})</td>
<td>12p13.3</td>
</tr>
<tr>
<td>LQT9</td>
<td>Caveolin3</td>
<td>CAV3</td>
<td>↑ (I_{Na}) ?</td>
<td>3p25.3</td>
</tr>
<tr>
<td>LQT10</td>
<td>Na(_v)(\beta)4</td>
<td>SCN4B</td>
<td>↑ (I_{Na})</td>
<td>11q23.3</td>
</tr>
<tr>
<td>LQT11</td>
<td>Yotiao</td>
<td>AKAP9</td>
<td>↓ (I_{Ks})</td>
<td>7q21-22</td>
</tr>
<tr>
<td>LQT12</td>
<td>Syntrophin</td>
<td>SNTA1</td>
<td>↑ (I_{Na}) ?</td>
<td>20q11.2</td>
</tr>
</tbody>
</table>
Long QT Syndrome

- Autosomal Dominant (Romano Ward), Autosomal Recessive (Jervell & Lange Nielsen) Acquired (drugs, intracranial bleed, etc)
- Symptoms: Syncope, aborted SCD, Seizures, SIDS
- Dx: QTc prolongation, T-wave abnormalities, torsades de pointes, family history, stress test
- Molecular diagnosis: Familion, GeneDx
- Therapies: Avoid QT prolonging meds, Beta blockers, ?K+/aldactone, ?mexilitine
Long QT Syndrome: Mechanism of Ion Channel Mutations

- Fewer functional K^+ channels
 - Mutations that alter RNA or protein expression
 - Mutations that alter channel trafficking to membrane

- Abnormal channels
 - Nonfunctional K^+ channels
 - Dysfunctional K^+ channels: Abnormal kinetics
 - Dysfunction Na^+ channels: Persistent late current

- Dominant negative K^+ channel subunits
Arrhythmic Mechanisms - Initiation

- Triggered Activity: long APD \rightarrow EADs
 - Early Afterdepolarizations
 - Action potential prolongation leading to reactivation of inward Ca$^{2+}$ currents

- Triggered Activity: long APD \rightarrow DADs
 - Delayed Afterdepolarizations
 - Abnormal release of Ca$^{2+}$ from the SR triggers inward current via Na-Ca exchanger
Arrhythmic Mechanisms – Maintenance (Reentrant Substrate)

• Slow conduction
 – Abnormal Na\(^+\) currents
 – Abnormal intercellular connections

• Anatomical barriers \(\rightarrow\) block
 – Scar, fibrosis

• Functional barriers \(\rightarrow\) block
 – Dispersion of repolarization and refractoriness
 – Heterogeneities: Apex/base, endocardium/epicardium, Purkinje fibers
LQTS: Genotype-Phenotype

- Arrhythmia by genotype:
 - LQT1: Exercise
 - LQT2: Noise
 - LQT3: Rest
 (Schwartz et al., J Intern Med 2006; 259: 39)

- More malignant mutations
 - Dominant negative and pore K⁺ channel mutations
 (Moss et al., Circulation 2007;115:2481-89)

- Gene-specific therapies
 - LQT1, LQT2: β-blockade
 - LQT2: K⁺ + Aldactone
 - LQT3: Mexilitine, Ranolazine
LQT1: Beta-Blockers

- KCNQ1/KCNE1 K^+ channels encode I_{KS}; Mutations of KCNQ1/KvLQT1 cause LQT1 form of LQTS
- Increased I_{KS} responsible for QT shortening with increased heart rate and β-adrenergic stimulation
- β-Blockers more effective in LQT1 than LQT2 or LQT3 (Priori et al., *JAMA* 2004;292:1341-44)
- Yotiao (AKAP) associates KCNQ1 to PKA & PP1. The KCNQ1-G589D mutation disrupts the macromolecular complex and causes LQT1 (Marx et al., *Science* 2002;295:496-9)
LQT2: K⁺ and Aldactone

- KCNH2 K⁺ channels encode I_{Kr}; HERG mutations cause the LQT2 form of LQTS
- HERG K⁺ channels have lower open probabilities with lower extracellular [K⁺]
- K⁺ supplements and aldactone can increase blood K⁺ and shorten the QT interval in LQT2 patients (Etheridge et al., *JACC* 2003;42:1777-82)
LQT3: Mexilitine

- Mutations that alter inactivation of the SCN5A Na\(^+\) channel lead to a late inward Na\(^+\) current; SCN5A mutations cause the LQT3 form of LQTS

- Mexilitine blocks late currents in vitro, in SCN5A mutant LQT3 mice, and decreases QTc in LQT3 subjects

(Wang et al., JCI 1997;99:1714-20) (Schwartz et al., Circulation 1995;92:3381-6)
Brugada Syndrome Family

Proband presented with syncope and got an AICD
T353I Mutation in Conserved Region of SCN5A
Mutant Channels Have Decreased Peak I_{Na}

(Pfahnl et al., Heart Rhythm 2007; 4: 46-53)
Brugada Syndrome Loci/Genes

<table>
<thead>
<tr>
<th>Locus</th>
<th>Protein</th>
<th>Gene</th>
<th>Current</th>
<th>Chromosome</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRUG1</td>
<td>Na_v,1.5</td>
<td>SCN5A</td>
<td>↓ I_Na</td>
<td>3p21</td>
</tr>
<tr>
<td>BRUG2</td>
<td>GPD1-L</td>
<td>GPD1L</td>
<td>↓ I_Na</td>
<td>3p24</td>
</tr>
<tr>
<td>BRUG3</td>
<td>Ca_v,1.2</td>
<td>CACNA1C</td>
<td>↓ I_Ca</td>
<td>12p13.3</td>
</tr>
<tr>
<td>BRUG4</td>
<td>Ca_v,β2</td>
<td>CACNB2B</td>
<td>↓ I_Ca</td>
<td>10p12</td>
</tr>
<tr>
<td>BRUG5</td>
<td>MiRP2</td>
<td>KCNE3</td>
<td>↑ I_to</td>
<td>11q13.4</td>
</tr>
<tr>
<td>BRUG6</td>
<td>Na_v,β1</td>
<td>SCN1B</td>
<td>↓ I_Na</td>
<td>19q13</td>
</tr>
</tbody>
</table>
Brugada Syndrome

- Characterized by a right bundle branch block pattern (RBBBp) and ST elevation in the right precordial leads (STE) of the EKG which can vary from day to day (Brugada & Brugada, 1992)
- Autosomal dominant, male predominance
- No structural heart disease
- Rare, but more common in Southeast Asia (Bangungut, Pokkuri, Lai Tai, SUDS).
Brugada Syndrome

- Syncope, aborted SCD, Family history
- Typical ECG pattern (coved vs. saddleback)
- Na\(^+\) channel blockers (e.g. ajmaline, flecainide, procainamide) exacerbate the ECG findings and are used diagnostically (Brugada et al., 2000)
- EP study: HV prolongation, inducible VF
- Molecular diagnosis: Familion, GeneDx
- Therapies: ICD, ?Quinidine
Brugada Syndrome: A Disorder of Depolarization

- Reduced depolarizing current in the epicardial cells of the RV (Antzelevitch, 1998)

- The repolarizing current I_{to} leads to:
 - loss of the action potential plateau
 - premature repolarization of the epicardium
 - transmural current flow with STE
 - reentrant arrhythmias
Brugada Syndrome:
Arrhythmia Mechanisms

Truncated Epicardial APs

Phase 2 Reentry
Brugada: Quinidine & Isoproterenol

• Mutations that decrease inward I_{Na} lead to premature repolarization in the RV epicardium where outward I_{to} is large.

• Quinidine blocks I_{to}, decreases ST elevation in some subjects, suppresses inducible VT/VF during EP study, and may decrease spontaneous arrhythmias (Belhassen et al., *Circulation* 2004;110:1731-7).

• Isoproterenol decreases ST elevation in the right precordial leads and suppresses VT storm, perhaps by increasing I_{Ca} (Jongman et al., *Neth Heart J* 2007;15:151-4).
Long QT and Brugada Syndromes: Disorders of Repolarization/Depolarization

- A number of dysfunctional K^+ channels, Na^+ channels, Ca^{2+} channels, and ion channel related proteins cause disease.

- These inherited disorders have catalyzed a huge amount of work on cardiac ion channels.

- Genotype-specific therapies exist, but they have not been proven to prevent arrhythmias or sudden cardiac death; Multicenter randomized controlled trials are needed.