Device Therapy for Heart Failure

Rami Kahwash, MD
Associate Professor in Internal Medicine
Division of Cardiovascular Medicine
Section of Heart Failure/Transplant
The Ohio State University Wexner Medical Center

Learning Objectives

- Overview of Heart failure stages and role of device-based therapies
- Implantable Cardioverter Defibrillator (ICDs) in primary prevention of SCD
- New defibrillation strategies (wearable ICD and subcutaneous ICD)
- Cardiac Resynchronization Therapy (CRT)
Background

- In 2013, the ACC/AHA published an updated Guideline for the Management of Heart Failure
- New terminologies, concepts and recommendations were introduced
- An attempt was made to harmonize the guideline with other guidelines, consensus documents and position papers which are cross-referenced

Terminology

- Guidelines Directed Medical Therapy (GDMT) represents the optimal medical therapy recommended with a class 1 indication
- Heart Failure with reduce Ejection Fraction (HFrEF). LVEF ≤ 40 %
- Heart failure with preserved Ejection Fraction (HFpEF). LVEF ≥ 50 %
 - HFpEF, borderline (LVEF 41-49 %)
 - HFpEF, improved (LVEF >40 %)
- Maintained the concept of “stages”
Classification of HF: Comparison Between ACC/AHA HF Stage and NYHA Functional Class

<table>
<thead>
<tr>
<th>ACC/AHA HF Stage¹</th>
<th>NYHA Functional Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A At high risk for heart failure but without structural heart disease or symptoms of heart failure (eg, patients with hypertension or coronary artery disease)</td>
<td>None</td>
</tr>
<tr>
<td>B Structural heart disease but without symptoms of heart failure</td>
<td>I Asymptomatic</td>
</tr>
<tr>
<td>C Structural heart disease with prior or current symptoms of heart failure</td>
<td>II Symptomatic with moderate exertion</td>
</tr>
<tr>
<td>D Refractory heart failure requiring specialized interventions</td>
<td>III Symptomatic with minimal exertion</td>
</tr>
<tr>
<td>E End stage</td>
<td>IV Symptomatic at rest</td>
</tr>
</tbody>
</table>

Therapeutic Options for Heart Failure Stages

Heart Failure Device-Based Therapies

- HRpEF (stage C)
 - Investigational devices to improve symptoms

Heart Failure Device-Based Therapies

- HFrEF
 - Stage C
 - Devices to improve survival (ICD)
 - Devices to improve survival and HF symptoms (CRT)
 - Investigational devices
Heart Failure Device-Based Therapies

HRpEF (stage C)

Investigational devices to improve symptoms

HFpEF

Stage C

Devices to improve survival (ICD)

Devices to improve survival and HF symptoms (CRT)

Investigational devices

HFrEF

Stage D

Mechanical Circulatory Support (LVAD)

Device to reduce hospitalization (remote hemodynamic monitoring/CardioMEMS)
Mode of Death in Heart Failure

NYHA Class 2 NYHA Class 3 NYHA Class 4

MERIT-HF Lancet 1999

Beta Blockers’ Effects on total Mortality and Sudden Death in Patients with HF

Heart 2001;85:97–103
Implantable Cardioverter-Defibrillator (ICD) Basics

- Designed to treat a cardiac tachydysrythmia
- Performs cardioversion/defibrillation
 - Ventricular rate exceeds programmed cut-off rate
- ATP (antitachycardia pacing)
 - Overdrive pacing in an attempt to terminate ventricular tachycardias
- All have pacemaker function (combo devices)

Major Components of the ICD system

![Diagram of ICD components]

- Atrial Lead
- RV Lead
- RV Shock Cable
- RV Pacing/Sensor Electrode
- ICD Pulse Generator
Schematic View of the Defibrillation Shock Generated by the ICD

SCD Primary Prevention Trials (ICD Vs. Conventional Therapy)

- MADIT II
- SCD-HeFT
MADIT-II

Objective:
- Evaluate the effectiveness of ICD therapy ($n = 742$) compared to conventional therapy ($n = 490$) in high-risk post-MI patients
- Post-MI > 4 weeks, and
- LVEF $< 30\%$

MADIT-II Survival Results

Reduced overall mortality by 31% ($p = 0.007$)

<table>
<thead>
<tr>
<th>Patients at Risk</th>
<th>Years</th>
<th>Defibrillator</th>
<th>Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defibrillator</td>
<td>0</td>
<td>742</td>
<td>65 (0.69)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>502 (0.91)</td>
<td>329 (0.90)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>274 (0.94)</td>
<td>170 (0.78)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>110 (0.78)</td>
<td>65 (0.69)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9 (0.77)</td>
<td>3 (0.69)</td>
</tr>
</tbody>
</table>

SCD-HeFT
Sudden Cardiac Death in Heart Failure Trial

• Determine if amiodarone or ICD will decrease the risk of death from any cause in patients with mild-to-moderate heart failure (Class II and III).
• Maximally treated CHF for ≥ 3 months with a LVEF of ≥ .35

SCD-HeFT Mortality Rate Overall Results

<table>
<thead>
<tr>
<th></th>
<th>Hazard Ratio (97.5% CI)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiodarone vs. Placebo</td>
<td>1.06 (0.86 - 1.30)</td>
<td>0.53</td>
</tr>
<tr>
<td>ICD vs. Placebo</td>
<td>0.77 (0.62 - 0.96)</td>
<td>0.007</td>
</tr>
</tbody>
</table>

Who should get an ICD?

- Ischemic CM, LVEF <0.30 (MADIT II)
- Ischemic and nonischemic dilated cardiomyopathy, NYHA class II/III CHF, LVEF < 35%. (SCD-HeFT).

Who should NOT get an ICD?

- CABG or PCI within the past 3 months-CABG-Patch
- Acute MI within the past 40 days-DINAMIT
- Concomitant disease with less than 1 year likelihood of survival.

Wearable ICD System

ICDs and MRI

- It is becoming feasible to use MRI for certain ICD and lead models that are MRI compatible if done according to certain protocols.

- Consulting with specialists is necessary before ordering MRIs in patients with ICDs.
Indications for ICD Deactivation

- End-of-life care
- Recurrent inappropriate shocks due to lead failure or SVT/AF with rapid ventricular response
- During surgical procedures requiring the use of electrocautery in close proximity to the pulse generator

Case Presentation

- A 45 year-old female with history of breast cancer, s/p bilateral mastectomy and chemotherapy (2 years ago). Her cancer is currently in remission with favorable prognosis. She developed Adriaamycin induced cardiomyopathy and despite >9 months of guideline directed medical therapy for heart failure, her LVEF remains 30%. She belongs to NYHA FC II. Her ECG shows NSR, normal intervals, QRS 90 ms, nonspecific T-wave abnormalities. Her L subclavian vein is occluded and she has a history of DVT in the R subclavian vein as a complication of prior Port-a-cath.
- Intravenous ICD implant is recommended?
 A. True
 B. False
Subcutaneous ICD

- 80 joules (delivered)
- 69cc, 145 grams
- Active generator
- 5 year longevity
- Post-shock pacing
- Single lead connection
- Full featured episode storage
- No Brady pacing or ATP

Subcutaneous ICD VS. Transvenous ICD

<table>
<thead>
<tr>
<th>Factors Favor S-ICD</th>
<th>Factors Favor TV-ICD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young and active (less lead failure)</td>
<td>Recurrent monomorphic VT (role of ATP)</td>
</tr>
<tr>
<td>CHD that limits lead placement, valve surgery</td>
<td>Bradycardia requiring pacing</td>
</tr>
<tr>
<td>Indwelling catheters</td>
<td>Indication for CRT</td>
</tr>
<tr>
<td>Immunocompromised</td>
<td>High risk for VT (e.g. sarcoidosis, ARVD).</td>
</tr>
<tr>
<td>Inherited channelopathies (low VT risks).</td>
<td>Preference for remote monitoring</td>
</tr>
</tbody>
</table>
Cardiac Resynchronization Therapy (CRT)

LBBB CRT Trial Design

Patients

<table>
<thead>
<tr>
<th>NYHA</th>
<th>LVEF Inclusion criteria</th>
<th>QRS Inclusion criteria</th>
<th>Primary end point</th>
<th>Results significantly favoring intervention group</th>
</tr>
</thead>
</table>

Major CRT Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Design</th>
<th>Patients</th>
<th>Mean follow-up</th>
<th>NYHA</th>
<th>LVEF inclusion criteria</th>
<th>QRS inclusion criteria</th>
<th>Primary end point</th>
<th>Results significantly favoring intervention group</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPANION (2004)</td>
<td>CRT-D, CRT-P, ICD</td>
<td>617, 595, 308</td>
<td>15</td>
<td>III, IV</td>
<td>≤35%</td>
<td>≥120 ms</td>
<td>All-cause mortality or hosp</td>
<td>+/+</td>
</tr>
<tr>
<td>CARE-HF (2005)</td>
<td>CRT-P, Med</td>
<td>409, 404</td>
<td>29</td>
<td>III, IV</td>
<td>≤35%</td>
<td>≥120 ms</td>
<td>All-cause mortality or cardiovascular hospitalization</td>
<td>+</td>
</tr>
<tr>
<td>MADIT-CRT (2009)</td>
<td>CRT-D, ICD</td>
<td>1089, 739</td>
<td>29</td>
<td>I, II</td>
<td>≤30%</td>
<td>≥130 ms</td>
<td>All-cause mortality or HF hosp</td>
<td>+</td>
</tr>
</tbody>
</table>
Indications for CRT

<table>
<thead>
<tr>
<th>Class I Indications</th>
<th>NYHA Class I</th>
<th>NYHA Class II</th>
<th>NYHA Class III & Ambulatory Class IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LVFF ≤ 35%</td>
<td>QRS ≥ 150ms</td>
<td>LVFF ≤ 35%</td>
</tr>
<tr>
<td></td>
<td>QRS ≥ 150ms</td>
<td>LBBB pattern</td>
<td>QRS ≥ 150ms</td>
</tr>
<tr>
<td></td>
<td>LBBB pattern</td>
<td>LVFF ≤ 35%</td>
<td>QRS ≤ 150ms</td>
</tr>
<tr>
<td></td>
<td>Sinus rhythm</td>
<td>QRS 120-149 ms</td>
<td>QRS 120-149 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LBBB pattern</td>
<td>LBBB pattern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinus rhythm</td>
<td>Sinus rhythm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class IIa Indications</th>
<th>NYHA Class I</th>
<th>NYHA Class II</th>
<th>NYHA Class III & Ambulatory Class IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LBBB pattern</td>
<td></td>
<td>LVFF ≤ 35%</td>
</tr>
<tr>
<td></td>
<td>Sinus rhythm</td>
<td></td>
<td>LVFF ≤ 150ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class IIb Indications</th>
<th>NYHA Class I</th>
<th>NYHA Class II</th>
<th>NYHA Class III & Ambulatory Class IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LVFF ≤ 30%</td>
<td>QRS > 150ms</td>
<td>LVFF ≤ 35%</td>
</tr>
<tr>
<td></td>
<td>QRS > 150ms</td>
<td>LBBB pattern</td>
<td>QRS ≥ 150ms</td>
</tr>
<tr>
<td></td>
<td>LBBB pattern</td>
<td>LVFF ≤ 35%</td>
<td>QRS ≤ 150ms</td>
</tr>
<tr>
<td></td>
<td>Ischemic cardiomyopathy</td>
<td>Sinus rhythm</td>
<td>QRS 120-149 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-LBBB pattern</td>
<td>Non-LBBB pattern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sinus rhythm</td>
<td>Sinus rhythm</td>
</tr>
</tbody>
</table>
Devices to Reduce Readmissions

Sitaramesh Emani, MD
Director of Heart Failure Clinical Trials
Assistant Professor of Clinical Medicine
Department of Internal Medicine
Division of Cardiovascular Medicine
The Ohio State University Wexner Medical Center

Burden of Heart Failure

Heart failure is a big problem …

– HF affects 5.5-7 million Americans

– $31 Billion on HF hospitalizations

– Most frequent cause of rehospitalization in the US

– Importantly, repeat HF admissions lead to worsening mortality!

Heidenriech PA, et al, Circ Heart Fail 2013
Jencks SF, et al, NEJM 2009
Evolution of Acute Heart Failure

- Pressure Changes
- Autonomic Adaptation
- Impedance Changes
- Weight Changes, HF Symptoms

HF Hospitalization

Traditional Methods: Weights & Symptoms

Benefits
- Easy to understand
- Minimal equipment
- Low costs

Drawbacks
- Low compliance rates
- Variability in implementation
- Sensitivity <25%

Moser DK, Am Heart J 2005
van der Wal MH, Eur Heart J 2006
Abraham WT, Congest Heart Fail 2011
Telemedicine Trials to Reduce Readmissions

<table>
<thead>
<tr>
<th>TELE-HF</th>
<th>TIM-HF</th>
<th>BEAT-HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIH sponsored</td>
<td>710 patients</td>
<td>1400+ patients</td>
</tr>
<tr>
<td>1600+ patients</td>
<td>Telemonitoring of weight & symptoms</td>
<td>Electronic telemonitoring</td>
</tr>
<tr>
<td>Frequent phone interactions</td>
<td>Not effective</td>
<td>Not effective</td>
</tr>
<tr>
<td>Not effective</td>
<td>Not effective</td>
<td>Not effective</td>
</tr>
</tbody>
</table>

Bioimpedance

Benefits
- Can be obtained from devices already implanted
- Correlate well to invasive measures

Drawbacks
- Not a primary indication for device implant
- Unlikely to be an option for HFpEF
- Low positive predictive value

Yu CM, *Circ 2005*
Conraads VM, *Eur Heart J 2011*
Bioimpedance Trials

<table>
<thead>
<tr>
<th>FAST</th>
<th>DOT-HF</th>
<th>OptiLink-HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Good sensitivity</td>
<td>□ No reduction in hospitalizations</td>
<td>□ Recently conducted</td>
</tr>
<tr>
<td>□ Good compliance</td>
<td>□ Increased hospitalizations</td>
<td>□ No hospitalization reduction</td>
</tr>
<tr>
<td>□ Exploratory only</td>
<td>□ Data did not induce clinical actions</td>
<td></td>
</tr>
</tbody>
</table>

Autonomic Adaptation: Biomarkers

Benefits
- Both HFpEF & HFrEF
- Repeatable and widely available

Drawbacks
- Requires phlebotomy (lab visit)
- Costs
- Confounding variables (*e.g.* obesity)
- Unclear what constitutes improvement

Yu CM, *Circ* 2005
Conraads VM, *Eur Heart J* 2011
Biomarker Trials for Rehospitalization

<table>
<thead>
<tr>
<th>Trial</th>
<th>Biomarker</th>
<th>Size</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Troughton, et al</td>
<td>BNP</td>
<td>69</td>
<td>Positive</td>
</tr>
<tr>
<td>STARS-BNP</td>
<td>BNP</td>
<td>220</td>
<td>Positive</td>
</tr>
<tr>
<td>Berger R, et al</td>
<td>NT-proBNP</td>
<td>278</td>
<td>Positive</td>
</tr>
<tr>
<td>PROTECT</td>
<td>NT-ProBNP</td>
<td>151</td>
<td>Positive</td>
</tr>
<tr>
<td>PRIMA</td>
<td>NT-ProBNP</td>
<td>345</td>
<td>Negative</td>
</tr>
<tr>
<td>BATTLE-SCARRED</td>
<td>NT-proBNP</td>
<td>364</td>
<td>Negative</td>
</tr>
<tr>
<td>TIME-CHF</td>
<td>BNP</td>
<td>499</td>
<td>Negative</td>
</tr>
<tr>
<td>GUIDE-IT</td>
<td>NT-proBNP</td>
<td>1100</td>
<td>Stopped Early (ineffective)</td>
</tr>
</tbody>
</table>

Hemodynamic Monitoring

Benefits
- Both HFpEF & HFrEF (CardioMEMSTM)
- Hemodynamics correlate well to HF events
- Occurs early in the decompensation process
- Known targets (PAD < 18 mmHg)

Drawbacks
- Invasive procedure
- Additional device (CardioMEMS)
- Monitoring by staff required

Stevenson LW, *Am J Cardiol* 1990
Stevenson LW, *Circ Heart Fail* 2010
Hemodynamic Monitoring: Sensor Choice

<table>
<thead>
<tr>
<th>Sensor Type</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>RV Lead</td>
<td>• Good for patients who need devices
• Unavailable to patients without device
• Worsening battery life</td>
</tr>
<tr>
<td>LA lead</td>
<td>• LA pressure better than PAD?
• An additional device implant
• Transseptal implant associated with increased complications</td>
</tr>
<tr>
<td>PA Sensor</td>
<td>• No battery
• Low implant complication rate
• Limited by body habitus
• Cost & reimbursement factors</td>
</tr>
</tbody>
</table>

Hemodynamic Monitoring: The Secret Sauce

- Early trials with hemodynamic monitoring did not improve outcomes. Why?
- Successful use of hemodynamics requires treatment to a numeric goal
- This must happen independent of symptoms
 - Physiologic changes will occur before symptoms

Bourge RC, JACC 2008
PA Sensors

- Implanted via right heart cath technique
- Typically placed in branch of left PA
- Provide PA systolic, diastolic, and mean pressures
- PA diastolic pressures typically mirror PCWP/LA pressures

www.wikipedia.org

CHAMPION: CardioMEMS Heart Sensor Allows Monitoring of Pressure to Improve Outcomes in NYHA Class III Heart Failure Patients

- Trial Designed by Steering Committee with active FDA input
- Prospective, multi-center, randomized, controlled single-blind clinical trial
- All subjects followed in their randomized single-blind study assignment until the last patient reached 6 months of follow-up
- 64 US Centers
- PIs: William Abraham, Phil Adamson

550 Pts
w/ CM Implants
All Pts Take Daily Readings

Treatment
270 Pts
Management Based on Hemodynamics + Traditional Info

Control
280 Pts
Management Based on Traditional Info

Primary Endpoint: HF Hospitalizations at 6 Months

Additional Analysis: HF Hospitalizations at All Days (~15 M mean F/U)

Multiple Secondary Endpoints

Hypothesis of the CHAMPION Trial

Change medications based on hemodynamic pressures instead of waiting for signs & symptoms

Heart failure hospitalizations

Protocol Guidelines: PA Pressure Management

Treatment Recommendations for Elevated PA Pressures

- Add or increase diuretic
 - increase/add loop diuretic
 - change loop diuretic
 - add thiazide diuretic
 - IV loop diuretic

- Add or increase vasodilator
 - add or increase nitrate
Primary Efficacy Endpoint

<table>
<thead>
<tr>
<th></th>
<th>Treatment (n=270)</th>
<th>Control (n=280)</th>
<th>Relative Risk Reduction</th>
<th>p-value(^1)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Efficacy Endpoint: HF Related Hospitalizations (Rate for 6 months)</td>
<td>84 (0.32)</td>
<td>120 (0.44)</td>
<td>28%</td>
<td>0.0002</td>
<td>8</td>
</tr>
<tr>
<td>Supplementary Analysis: HF Related Hospitalizations (Full Duration - Annualized Rate)</td>
<td>158 (0.46)</td>
<td>254 (0.73)</td>
<td>37%</td>
<td><0.0001</td>
<td>4</td>
</tr>
</tbody>
</table>

\(^1\) p-value from negative binomial regression
NNT = Number Needed to Treat

PA Monitoring Benefits Are Additive

<table>
<thead>
<tr>
<th>GDMT Class</th>
<th>HF Hospitalization</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Ratio</td>
<td>NNT</td>
</tr>
<tr>
<td>ACEi/ARB</td>
<td>0.59</td>
<td>4</td>
</tr>
<tr>
<td>Beta-blocker</td>
<td>0.66</td>
<td>5</td>
</tr>
<tr>
<td>ACEi/ARB & Beta-blocker</td>
<td>0.57</td>
<td>3</td>
</tr>
</tbody>
</table>

Abraham WT, JACC 2015
Hemodynamic Monitoring Summary

- Implantable hemodynamic monitors provide direct and actionable measurements of intracardiac and pulmonary artery pressures.
- Management guided by such monitors reduces the risk of heart failure hospitalizations.
- This approach promises to revolutionize the management of heart failure patients.
 - Crisis management ➔ Stability management.

CardioMEMSTM: Current Status

- Only approved PA pressure monitoring system at present.
- Approved for use in NYHA III HF patients.
- Intended to:
 - Reduced HF hospitalizations
 - Improved QoL
 - No indication to improve survival.
Mechanical Circulatory Support Devices

HF Topography

NYHA I

NYHA II

NYHA III

NYHA IV
NYHA Classification

1 year mortality of NYHA III HF is 10-15%

Scrutenid et al, EHJ 1994
Gheorghiade et al, JACC 2013

NYHA Classification

1 year mortality of NYHA III HF is 10-15%

A HF hospitalization is a strong predictor of mortality (NYHA IIIb-IV)

Scrutenid et al, EHJ 1994
Gheorghiade et al, JACC 2013
NYHA Reproducibility

Inter-observer evaluation
Exact reproducibility: 56%
Within 1 functional class: 93%

NYHA III best correlated with exercise testing
(75% of patients)

Goldman et al, Circ 1981
Franciosa et al, Am J Med 1979
Bennett et al, JHLT 2002
Cardiopulmonary Exercise Testing

- Also known as metabolic stress test, VO2 test

- Peak VO₂ performance <14 ml/kg/min is associated increased risk of death within 24 months in HF patients

No VO₂ testing? Try a 6-minute walk

- Distance ≤ 468 m (1535 ft) predicts higher mortality and hospitalization risk

- 6MWT is a good screening tool

- However, not as strongly correlated as VO₂ data

Wegrzynowska-Teodorczyk K, et al, J Physiotherapy 2013
The High-Risk HF Patient

1 or more of the following:

- HF Sx that fail to respond to medical therapy (persistent NYHA III or worse symptoms)
- Peak VO₂ <14 ml/kg/min
- Intolerance to HF meds (esp new intolerance)
 - Hypotension
 - Renal dysfunction
 - Bradycardia
- Frequent hospitalizations
 - 2 in 3 months
 - 3 in 6 months
 - Need for inotropes during hospital stay

Treatment Options for High-Risk HF Patients

Transplant
- Good long term survival
- Strict selection criteria
- Limited supply of donor hearts
- Complex post-transplant medical regimen

Ventricular Assist Devices
- Improving long term survival (>70% at 2 years)
- Non-limited resource
- Can be bridge-to-transplant (BTT) or destination therapy (DT)
- Requires anti-coagulation
- Complex post-implant medical regimen

Palliative Care/Hospice
- Quality of life > survival
VAD Criteria

- Used as either Bridge to Transplant (BTT) or Destination Therapy (DT)
- EF \leq 25%
- For BTT – must be listed for transplant
- For DT:
 - Failed optimal therapy for 45 of last 60 days
 - Or inotrope dependent (minimum 14 days)
 - Or IABP x 7 days
 - Peak VO$_2$ \leq 14

www.cms.gov

Ventricular Assist Devices
Summary of VAD Therapy for HF

- Improves survival
- Improves functional status
- Improves quality of life
- Improving technology to reduce complications
- Part of guideline recommendations for treatment of HF

Rogers J, et al, *JACC* 2010