Use and Complications of NSAIDs

Sheryl Mascarenhas, MD
Assistant Professor of Medicine
Division of Rheumatology and Immunology
The Ohio State University Wexner Medical Center

Objectives

- Better understand mechanism of action for NSAIDs
- Gain enhanced understanding of NSAID use
- Improve familiarity with complications of NSAIDs
NSAID Pharmacology

What is an NSAID?

- Non steroidal Anti-inflammatory Drugs
- Weak organic acid
- Binds to serum proteins (albumin)
- Generally have low ionization constant (pKₐ)¹
 - Causing binding to sites of inflammation
 - e.g. inflamed joints have lower pH than normal joints
- Main anti-inflammatory properties due to inhibition of prostaglandin synthesis by blocking the enzyme prostaglandin G/H synthase (PGHS) also called cyclooxygenase (COX)²

Effects of NSAIDs

- Analgesia
- Antiinflammatory
- Antipyresis
- Antiplatelet
 - inhibit COX-1 thus preventing thromboxane A₂ (TXA₂) production to decrease platelet aggregation

Mechanism of Action

COX isoforms

<table>
<thead>
<tr>
<th>COX-1</th>
<th>COX-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Found in most tissues</td>
<td>Brain, kidney, sites of inflammation</td>
</tr>
<tr>
<td>Present in Platelets</td>
<td>Not in platelets</td>
</tr>
</tbody>
</table>

Theoretical GI safety for COX-2
Theoretical no bleeding risk for COX-2

NSAID Classes

<table>
<thead>
<tr>
<th>Salicylate acetylated</th>
<th>Salicylate non-acetylated</th>
<th>Propionic Acids</th>
<th>Enolic Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>Diflunisal</td>
<td>Naproxen</td>
<td>Meloxicam</td>
</tr>
<tr>
<td>Choline, Magensium</td>
<td>Ibuprofen</td>
<td></td>
<td>Piroxicam</td>
</tr>
<tr>
<td>Trisalicylate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salsalate</td>
<td>Ketoprofen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flubiprofen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxaprozin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NSAID Classes

<table>
<thead>
<tr>
<th>Acetic Acids</th>
<th>Anthranilic Acids</th>
<th>Nonacidic</th>
<th>Selective Cox 2 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac</td>
<td>meclofenamate</td>
<td>nabumatone</td>
<td>Celecoxib</td>
</tr>
<tr>
<td>Etodolac</td>
<td>Mefanamic acid</td>
<td></td>
<td>Etorcoxib (not available in USA)</td>
</tr>
<tr>
<td>Indomethacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulindac</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolmetin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Class Chemistry

- All NSAIDs inhibit the COX active site.
- Variances in how the NSAIDs interact and bind with the active site result in pharmacologic differences.
Aspirin in its’ own class

<table>
<thead>
<tr>
<th>Aspirin</th>
<th>Other NSAIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Covalent, irreversible binding of COX-1 and COX-2</td>
<td></td>
</tr>
<tr>
<td>• 10 to 100 fold less affinity for COX-2 due to larger active site on COX-2</td>
<td></td>
</tr>
<tr>
<td>• Competitive inhibitors, competing for arachidonic acid for binding in the active site</td>
<td></td>
</tr>
</tbody>
</table>

COX selectivity

<table>
<thead>
<tr>
<th>COX-1 specific</th>
<th>COX nonspecific</th>
<th>COX-2 preferential</th>
<th>COX-2 specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Dose Aspirin</td>
<td>Ibuprofen Naproxen Indomethacin</td>
<td>Meloxicam Etodolac Diclofenac Nabumetone</td>
<td>Celecoxib</td>
</tr>
</tbody>
</table>

PGE\(_2\) Inhibition by NSAIDs

- PGE\(_2\) is the most abundant Prostaglandin (PG) at sites of inflammation\(^1\)
- Microsomal PGE synthase-1 (mPGES-1) acts in concert with COX-2 to produce high levels of PGE\(_2\) during inflammation\(^2\)
- NSAIDs block mPGES-1

CAMP Decreased by NSAIDs

- Can inhibit phosphodiesterases which lead to increased cAMP levels resulting in inhibition of:
 - peripheral blood lymphocyte response to mitogen stimulation
 - Monocyte and neutrophil migration
 - Neutrophil aggregation

More NSAID actions

- Scavenge free radicals
- Inhibit superoxide production by PMNs
- Reduce mononuclear cell phospholipase C activity
- Inhibit inducible nitric oxide synthase activity
- Aspirin and salicylate inhibit NFκB activation
- Bind to and activate members of the peroxisome proliferator-activated receptor (PPAR) family

NSAID metabolism

- Hepatically biotransformed
- Renally eliminated
 - NSAIDs not dialyzable due to plasma binding
 - Except for salicylic acid¹
- Genetic variation in metabolizing enzymes and variability in intestinal microbiota effect metabolism and excretion¹
- Cross Blood brain barrier²

NSAID Absorption

- 2-3 hours to reach Peak Plasma Concentrations
- Antacids may delay absorption

Basic Principles of NSAID Use
NSAID Classes

<table>
<thead>
<tr>
<th>Salicylate acetylated</th>
<th>Salicylate non-acetylated</th>
<th>Propionic Acids</th>
<th>Enolic Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
<td>Diflunisal</td>
<td>Naproxen</td>
<td>Meloxicam</td>
</tr>
<tr>
<td>Choline Magensium Trisalicylate</td>
<td>Ibuprofen</td>
<td></td>
<td>Piroxicam</td>
</tr>
<tr>
<td>Salsalate</td>
<td>Ketoprofen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flubiprofen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Oxaprozin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acetic Acids</th>
<th>Anthranilic Acids</th>
<th>Nonacidic</th>
<th>Selective Cox 2 inhibitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diclofenac</td>
<td>meclofenamate</td>
<td>nabumatone</td>
<td>Celecoxib</td>
</tr>
<tr>
<td>Etodolac</td>
<td>Mefanamic acid</td>
<td></td>
<td>Etorcoxib (not available in USA)</td>
</tr>
<tr>
<td>Indomethacin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulindac</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolmetin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Generally start at low doses, then titrate up
- 2 week drug trials
- If drug failure switch to alternate class

Monitoring

- When starting chronic NSAIDs
 - Recommend checking kidney and liver function within first few months
- For chronic uses at least once yearly:
 - BUN/Creatinine
 - Liver Function Tests
 - CBC

Comorbidities which Restrict NSAID use

- Cardiovascular disease
 - Coronary artery disease
 - Myocardial infarction
 - Stroke
- Chronic Kidney Disease Stage IV-V
- Aspirin Exacerbated Respiratory disease (AERD)
- Peptic Ulcer Disease

Solomon, Daniel. NSAIDs: Therapeutic use and variability of response in adults
Perioperative Management

<table>
<thead>
<tr>
<th>Drug</th>
<th>Half life (hours)</th>
<th>Withdrawal Preoperatively</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibuprofen</td>
<td>1.6-1.9</td>
<td>10 hours</td>
</tr>
<tr>
<td>Naproxen</td>
<td>12-15</td>
<td>3 days</td>
</tr>
<tr>
<td>Indomethacin</td>
<td>4.5</td>
<td>1 day</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>2</td>
<td>10 hours</td>
</tr>
<tr>
<td>Celecoxib</td>
<td>11</td>
<td>Continue dose</td>
</tr>
</tbody>
</table>

Perioperative Management

- Continue Aspirin if being used for Cardiovascular prevention¹
- No changes in bleeding in Carotid Endarterectomy²
- Postoperative hematomas were not significantly increased in cholecystectomy, appendectomy, open or laparoscopic inguinal hernia repair, liver surgery and hip and knee arthroscopy³-⁵

Perioperative Management

- NSAIDs may prevent heterotopic ossification (HO) post arthroplasty
- HO more common in Ankylosing spondylitis and psoriatic arthritis
- Indomethacin 75-100 mg/d or celecoxib 400 mg/d recommended ideally 24-48 hours post op and continued for 20 days

Obstetric Management

- May interfere with ovulation and implantation
- May result in premature closure of the patent ductus arteriosus.
- Recommendations:
 - Avoid NSAIDs after 30 weeks of gestation
 - Limited Data with lactation
 - Ibuprofen is only secreted in small amounts in breast milk

Management in Elderly

• More likely to experience CV and GI effects
• More likely to have drug-drug interactions given higher likelihood of polypharmacy
• More likely to make dosing errors

Topical NSAIDs
Topical NSAIDs

- Recommended for knee osteoarthritis (OA)
 - American Association of Orthopaedic Surgeons (AAOS) 2013
 - American College of Rheumatology (ACR) 2012
 - European League Against Rheumatism (EULAR) 2003, 2007
 - National Institute for Health and Clinical Excellence (NICE, United Kingdom) 2008
 - Osteoarthritis Research Society International (OARSI) 2008
- Recommended for hand OA
 - ACR
 - EULAR
 - NICE
- Recommended for localized pain
 - American Geriatric Society (AGS) 2009
 - American Pain Society (APS) 2002
 - NICE

Systemic bioavailability of topical NSAIDs

- 3 way cross over study 39 healthy volunteers received three 7-day diclofenac regimens:
 - (A) 16 g gel applied as 4 g to 1 knee 4 times daily (4 g on surface area 400 cm²)
 - (B) 48 g gel applied as 4 g per knee 4 times daily to 2 knees plus 2 g gel per hand applied 4 times daily to 2 hands (12 g on 1200 cm²)
 - (C) 150 mg oral diclofenac applied as 50-mg tablets 3 times daily.

Systemic bioavailability of topical NSAIDs

<table>
<thead>
<tr>
<th></th>
<th>16 g</th>
<th>48 g</th>
<th>oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic exposure</td>
<td>$AUC_{0-24} = 233 \pm 128 \text{ ng} \cdot \text{h/mL}$</td>
<td>$AUC_{0-24} = 807 \pm 478 \text{ ng} \cdot \text{h/mL}$</td>
<td>$AUC_{0-24} = 3890 \pm 1710 \text{ ng} \cdot \text{h/mL}$</td>
</tr>
</tbody>
</table>

- Topical diclofenac did not inhibit platelet aggregation and inhibited COX-1 and COX-2 less than oral diclofenac.

- Treatment-related adverse events were mild and limited to application site reactions with diclofenac sodium gel 1% ($n = 4$) and gastrointestinal reactions with oral diclofenac ($n = 3$).

NSAID Complications
<table>
<thead>
<tr>
<th>Big 3 complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gastrointestinal</td>
</tr>
<tr>
<td>• Renal</td>
</tr>
<tr>
<td>• Cardiovascular</td>
</tr>
</tbody>
</table>
Injuries to Gastric mucosa

- NSAIDs may disrupt the gastric epithelial cell barrier causing mucosal erosions
- PG depletion perpetuates the development of clinically significant ulcerations
- pKa important in determining risk of topical injury
 - Aspirin prone to mucosal injury
 - Nonacidic NSAIDs (nabumetone, etodolac, celecoxib) not prone to acute mucosal lesions

Dyspepsia

- 10-20% of NSAID users
- Present even amongst COX-2 selective NSAIDs
- Improved with Proton pump inhibitors (PPI)
- Improved with histamine-2-receptor antagonists (H$_2$RAs)

Gastritis and Gastroduodenal Ulcer

- Risk highest in first 3 months\(^1\)
- Risk is dose dependant\(^2\)
- RR 4.5 (95% CI, 3.82 to 5.31) for traditional NSAIDs
- RR 1.88 (95% CI, 0.96 to 3.71) for selective COX-2 inhibitors\(^2\)

Outliers in GI risks

<table>
<thead>
<tr>
<th>RR</th>
<th>Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.42</td>
<td>Celecoxib</td>
</tr>
<tr>
<td>2.69</td>
<td>Ibuprofen</td>
</tr>
<tr>
<td>9.94</td>
<td>Piroxicam</td>
</tr>
<tr>
<td>14.54</td>
<td>Ketorolac</td>
</tr>
</tbody>
</table>

Risk Factors for NSAID-Induced GI Bleeding and perforation

- Previous peptic ulcer disease
- Previous GI bleed
- Previous hospitalization for GI disease
- History of NSAID-induced gastritis or dyspepsia
- Use of H2 blocker or antacid for dyspepsia
- Concurrent steroid use
- Older age
- History of CV disease
- Smoking
- Alcoholism

Adapted from Bolware, DW and Heduebert GR. Lippincott’s Primary Care rheumatology. Lippincott Williams and Wilkens. 2013. Page282
Combination Drugs

<table>
<thead>
<tr>
<th>Drug</th>
<th>Medication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthrotec</td>
<td>Diclofenac and misoprostol</td>
</tr>
<tr>
<td>Vimovo</td>
<td>Naproxen and Esomeprazole</td>
</tr>
<tr>
<td>Duexis</td>
<td>Ibuprofen and Famotadine</td>
</tr>
</tbody>
</table>

- Arthrotec more effective at reducing hospitalization for PUD or GI hemorrhage compared to coprescription\(^1\)

GI Risks: Small Intestine

- Short-term NSAIDs medication associated with small intestinal injuries in 50% to 70% of subjects\(^1-3\)
- NSAID Suppression of prostaglandin synthesis renders the intestinal mucosa more susceptible to injury and less efficient in undergoing repair\(^4-5\)
- Gram negative bacteria suppression with a PPI could exacerbate NSAID-induced small intestinal damage\(^6\)

GI Risks: Small Intestine

- **Video Capsule endoscopy (VCE) studies:**
 - After 2 week treatment in healthy volunteers mucosal break rates:
 - 16% (18/115) celecoxib 200 mg BID
 - 55% (61/111) naproxen 500 mg BID + omeprazole 20 mg daily
 - 7% (8/113) of placebo
 - After 2 week treatment in healthy volunteers mucosal break rates:
 - 6% (7/109) of celecoxib group 200 mg BID
 - 26% (30/112) of ibuprofen 800 mg TID + omeprazole 20 mg
 - 7% (8/113) of placebo group

GI risk: Large intestine

- NSAIDs can cause colonic erosions, ulcers, hemorrhage, perforations, strictures.

- Consider NSAID colonopathy in the differential for inflammatory bowel disease

Hepatotoxicity risks

- Up to 15% have reversible elevations in AST and ALT
- More likely with diclofenac
- Usually occurs in first 6 months of use
- Severe hepatitis has been reported with:
 - Indomethacin
 - Diclofenac
 - Sulindac

Renal Complications
Renal effects

- PGs important to solute and renovascular homeostasis\(^1\)
- COX-1 expressed in renal vasculature, glomerular mesangial cells, and collecting duct
- COX-2 expressed in vasculature, cortical thick ascending limb (cells in macula densa), medullary interstitial cells\(^2\)
- COX-2 inhibition may result in apoptosis of medullary interstitial cells and result in papillary necrosis\(^3\)

Sodium Excretion

- PGs inhibit active transport of sodium in the thick ascending limb and the collecting ducts and increase renal water excretion by blunting the actions of vasopressin\(^1\)
- Sodium retention reported in up to 25% of NSAID treated patients
 - More likely in those with heart failure or liver disease
- Consider if weight gain or peripheral edema

Hypertension

- Average increase of mean arterial blood pressure 5 to 10 mm Hg
- NSAIDs may attenuate antihypertensives
 - Diuretics
 - ACE inhibitors
 - Beta blockers
- NSAID treated patients may develop hyporeninemic hypoaldosteronism manifesting as type IV renal tubular acidosis

Acute Renal Failure

- Due to vasoconstrictive effects of NSAIDs
- Can be reversible
- More common in those with:
 - CHF
 - Cirrhosis
 - Renal insufficiency

Chronic Kidney Disease

- Chronic aspirin or acetaminophene users have 2.5 times greater risk of developing CKD\(^1\)
- No association between the use of non-aspirin NSAIDs and chronic renal failure detected after adjusting for aspirin and acetaminophene\(^1\)

Cardiovascular Risks
Cardiovascular Effects

- COX-1 isoform generates platelet TXA₂ which effects platelet aggregation and thrombus formation\(^1\)
- PGI₂ is antithrombotic and blocked by COX-2 inhibition\(^2\)

Additional CV Effects

- NSAIDs effect:
 - Blood pressure
 - Endothelial function
 - Nitric oxide production
 - May interfere with Aspirin (particularly ibuprofen and naproxen)

CV Risks

- All traditional and COX-2 selective NSAIDs associated with at least a 30% increase CV risk
 - Exception:
 - Naproxen\(^1\)
 - Once daily dosing of Celecoxib\(^2\)
 - Dose and slow release formulation effect risk directly\(^1,3\)

Withdrawal of COX-2 Drugs

- VIGOR trial showed adverse cardiovascular (CV) outcomes in a placebo-controlled trial resulted in the withdrawal of the selective COX-2 inhibitor rofecoxib in 2004\(^1\)
- Celecoxib suggested to result in CV harm from use of higher doses, therefore the Food and Drug Administration (FDA) allowed continued marketing of celecoxib, but mandated a cardiovascular safety trial\(^2\)
- Prospective Randomized Evaluation of Celecoxib Integrated Safety versus Ibuprofen or Naproxen (PRECISION) assessed CV, gastrointestinal (GI), renal, and other outcomes with celecoxib as compared with two nonselective NSAIDs.

PRECISION trial

- Inclusion: established cardiovascular disease (CVD) or an increased risk of the development of CVD
- 24,081 patients Randomly assigned, in a 1:1:1 ratio, to receive celecoxib (100 mg twice a day), ibuprofen (600 mg three times a day), or naproxen (375 mg twice a day)
- For RA could increase the dose of celecoxib to 200 mg twice a day, the dose of ibuprofen to 800 mg three times a day, or the dose of naproxen to 500 mg twice a day
- Esomeprazole (20 to 40 mg) was provided to all patients for gastric protection
- low-dose aspirin (\(\leq 325\) mg daily) was permitted
- Average duration of treatment about 20 months
- Average duration of follow up about 34 months

PRECISION Trial

- Adverse event that met Antiplatelet Trialists Collaboration (APTC) criteria:
 - Death from cardiovascular causes
 - Hemorrhagic death
 - Nonfatal myocardial infarction
 - Nonfatal stroke
- Major CV events
 - Coronary Revascularization
 - Hospitalization for Unstable Angina
 - Hospitalization for Transient Ischemic Attack (TIA)
PRECISION Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Celecoxib (8072)</th>
<th>Naproxen (7969)</th>
<th>Ibuprofen (8040)</th>
<th>Celecoxib vs Naproxen HR</th>
<th>Celecoxib vs Ibuprofen HR</th>
</tr>
</thead>
<tbody>
<tr>
<td>APTC* endpoints</td>
<td>188 (2.3%)</td>
<td>201 (2.5%)</td>
<td>218 (2.7%)</td>
<td>0.93 (0.76-1.13) p=0.45</td>
<td>0.85 (0.7-1.04) P=0.12</td>
</tr>
<tr>
<td>Major CV** events</td>
<td>337 (4.2%)</td>
<td>346 (4.3%)</td>
<td>384 (4.8%)</td>
<td>0.97 (0.83-1.12) p=0.64</td>
<td>0.87 (0.75-1.01) p=0.06</td>
</tr>
<tr>
<td>Major GI events</td>
<td>55 (0.7%)</td>
<td>56 (0.7%)</td>
<td>72 (0.9%)</td>
<td>0.97 (0.67-1.40) p=0.86</td>
<td>0.76 (0.53-1.08) p=0.12</td>
</tr>
<tr>
<td>Renal events</td>
<td>57 (0.7%)</td>
<td>71 (0.9%)</td>
<td>92 (1.1%)</td>
<td>0.79 (0.56-1.12) p=0.19</td>
<td>0.61 (0.44-0.81) p=0.04</td>
</tr>
<tr>
<td>Deaths</td>
<td>132 (1.6%)</td>
<td>163 (2%)</td>
<td>142 (1.8%)</td>
<td>0.80 (0.63-1.00) p=0.052</td>
<td>0.92 (0.73-1.17) p=0.49</td>
</tr>
</tbody>
</table>

*APTC=Antiplatelet Trialist Collaboration Criteria (i.e., death from CV causes, including hemorrhagic death; nonfatal myocardial infarction; or nonfatal stroke.
**APTC and coronary revascularization or hospitalization for unstable angina or transient ischemic attack (TIA)

Heart Failure Complications

- **NSAIDs effect:**
 - Sodium excretion
 - Volume Expansion
 - Increased Preload
 - Hypertension

- Pre-existing heart failure patients at risk of decompensation
 - RR 3.8 (95% CI, 1.1 to 12.7)
 - RR 9.9 (95% CI, 1.7 to 57) when adjusted for age, sex, and concomitant medication

Less Common Complications

Aspirin Exacerbated Respiratory Disease (AERD)

- Cox-1 inhibition may cause:
 - Bronchospasm
 - Flushing
 - Conjunctival Injection
 - Nasal congestion

- More likely in those with chronic rhinosinusitis and nasal polyposis
- Samter’s triad = asthma, nasal polyps, aspirin sensitivity

Hematologic Risks

- Aplastic anemia
- Pure red cell aplasia
- Thrombocytopenia
- Neutropenia

Dermatologic Risks

- Photosensitivity
- Urticaria
- Angioedema
- Erythema multiforme
- Toxic epidermal necrolysis
Neurologic Risks

- Aseptic meningitis (especially in systemic lupus erythematosus patients)—ibuprofen
- Headaches
- Dizziness
- Loss of concentration
- Depersonalization
- Tremor
- Psychosis—indomethacin

Additional Rare Adverse reactions

- Febrile reaction—ibuprofen
- Mediastinal lymphadenopathy—sulindac
- Stomatitis
- Small bowel webs—piroxicam
- Sulfa allergy—celecoxib
- Kidney stones—sulindac
- Reversible infertility due to interference with ovulation and implantation

Elisever Mosby. 2015
Drug Interactions

Plasma binding interactions

- NSAIDs may displace other drugs from binding to plasma binding sites thereby increasing drug toxicity:
 - Sulfonylurea
 - Hypoglycemic agents
 - Oral anticoagulant
 - Phenytoin
 - Sulfonamides
 - Methotrexate

Drug Interactions

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methotrexate</td>
<td>Increases plasma levels of methotrexate</td>
</tr>
<tr>
<td>ACE inhibitors</td>
<td>Lowers effects</td>
</tr>
<tr>
<td>Aspirin</td>
<td>Both block COX-1 but Aspirin is irreversible, so offers cardioprotective effects</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>Increase GI risks</td>
</tr>
<tr>
<td>Anticoagulants</td>
<td>Inhibit platelet function and increase bleeding</td>
</tr>
<tr>
<td>SSRI</td>
<td>Increase GI risks</td>
</tr>
</tbody>
</table>

Take Aspirin 2 hours before other NSAIDs

Anti-hypertensive interactions

- ACE inhibitors
- Thiazides
- Beta Blockers
NSAID Overdose

Aspirin/salicylate intoxication

• Signs/symptoms
 • Tachypnea
 • Confusion
 • Ataxia
 • Oliguria
 • Increased BUN/Cr

Aspirin/salicylate intoxication

- Metabolic acidosis may be masked by hyperventilation due to stimulation of respiratory centers
- Therapy:
 - Evacuation of the stomach
 - Forced diuresis while maintaining urinary pH in alkaline range
 - Potassium replacement
 - Hemodialysis
 - Consider Vitamin K as salicylates may interfere with synthesis of vitamin K depended clotting factors

Non-Aspirin/salicylate NSAID overdose

- Signs/symptoms
 - CNS depression
 - Seizures
 - Apnea
 - Nystagmus
 - Blurred vision
 - Diplopia
 - Headache
 - Tinnitus
 - Bradycardia
 - Hypotension
 - Abnormal renal function
 - Coma
 - Cardiac arrest

Non-Aspirin/salicylate NSAID overdose

- Treatment
 - Evacuation of the stomach
 - Observation
 - Administration of fluids

Practical Applications
Low Risk

- <65 years old
- No CV risks
- No requirement for high dose or chronic therapy
- No concomitant aspirin, corticosteroids, or anticoagulants

Traditional NSAID
Shortest duration
Lowest Dose possible

Intermediate Risk

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>≥65 Years old</td>
<td></td>
</tr>
<tr>
<td>No history of previous complicated GI ulceration</td>
<td></td>
</tr>
<tr>
<td>Low cardiovascular risk (may be using aspirin for primary prevention)</td>
<td></td>
</tr>
<tr>
<td>Requirement for chronic therapy and/or high-dose therapy</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional NSAID + GI protective agent*</td>
<td></td>
</tr>
<tr>
<td>Once daily celecoxib + GI Protective agent*</td>
<td></td>
</tr>
</tbody>
</table>

If using Aspirin:
- Take low dose (75-81 mg)
- Traditional NSAID ≥ 2 hours after aspirin dose

*PPI, misoprostol, or high dose H₂RA

High Risk

- Elderly, especially if frail, hypertension, renal disease or liver disease
- History of previous complicated ulcer of multiple GI factors
- History of cardiovascular disease and on aspirin or other antiplatelet agent for secondary hypertension
- History of heart failure

Use acetaminophen
Avoid chronic NSAIDs if possible
Use intermittent NSAID dosing,
Use low-dose, short half life NSAIDs
Avoid extended release formulations

If GI risk > CV:
Once-daily celecoxib +
PPI/misoprostol
If CV risk > GI: Naproxen +
PPI/misoprostol

Avoid PPI if using antiplatelet agent (e.g. clopidogrel)

Final Thoughts

- NSAIDs analgesic, antipyretic, anti-inflammatory properties permit many applications
- NSAIDs have a variety of complications including GI, Renal, and CV
- Comorbidities and risks with different NSAIDs can help in better selecting specific NSAID regimens

References for Topical NSAIDs