Immunosuppressant Medications

Brian C. Keller, MD, PhD
Assistant Professor of Medicine
Division of Pulmonary, Critical Care & Sleep Medicine
The Ohio State University Wexner Medical Center

Presentation outline

• Evolution of immunosuppressive therapies

• Common indications for immunosuppression

• Discussion of immunosuppressive drug classes

• Prophylaxis, Immunization and Pregnancy considerations
Goals of immunosuppressive therapies

- Prevent allograft rejection after transplant
- Control baseline inflammatory disease
- Prevent and/or treat disease flares
- Minimize adverse effects
- Avoid infectious complications

Indications

- Solid organ and bone marrow transplantation
- Autoimmune disease
 - Rheumatoid arthritis
 - Crohn's disease
 - Myasthenia gravis
 - Multiple sclerosis
 - Ulcerative colitis
 - Ankylosing spondylitis
 - Psoriasis
 - Behcet's
 - Sarcoidosis
 - SLE
 - FSGS
- Asthma
• Pre-20th century attempts at transplantation
 – 300 B.C.: Pien Chi’ao, Chinese physician
 – 3rd century A.D.: Cosmas & Damian
 – “biochemical barrier to transplantation” Ernst Unger (1909)

• 1910s – use of cytotoxic medications
• 1950s – sublethal total-body irradiation
• 1954 – successful kidney transplant between identical twins

1950 Nobel Prize in Physiology or Medicine

<table>
<thead>
<tr>
<th>Edward Calvin Kendall</th>
<th>Philip Showalter Hench</th>
<th>Tadeusz Reichstein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemist</td>
<td>Rheumatologist</td>
<td>Chemist</td>
</tr>
</tbody>
</table>
History of Immunosuppression

1949: Cortisol
1961: Methotrexate
1987: Tacrolimus

1940s
1950s
1960s
1970s
1980s
1990s

1959: Cyclophosphamide
1959: 6-mercaptopurine
1976: Cyclosporin A
1977: Rapamycin
1978: Leflunomide
1991: Mycophenolate
1994: Rituximab
1994: TNF inhibitors

Diagram showing T cell and B cell activation pathways with various immunosuppressive drugs indicated.
Immunosuppressant Medications

Pamela Burcham, RPh
Specialty Practice Pharmacist
Department of Anesthesiology
The Ohio State University Wexner Medical Center

Corticosteroids

- Nonspecific anti-inflammatory affects both B and T cell lines

<table>
<thead>
<tr>
<th>Medication</th>
<th>Activity</th>
<th>Duration of Action (hours)</th>
<th>Equipotent Dose (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glucocorticoid</td>
<td>Mineralocorticoid</td>
<td></td>
</tr>
<tr>
<td>Hydrocortisone</td>
<td>1</td>
<td>1</td>
<td>8-12</td>
</tr>
<tr>
<td>Prednisone</td>
<td>4</td>
<td>0.8</td>
<td>18-36</td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>5</td>
<td>0.5</td>
<td>18-36</td>
</tr>
<tr>
<td>Dexamethasone</td>
<td>30</td>
<td>0</td>
<td>36-54</td>
</tr>
<tr>
<td>Fludrocortisone</td>
<td>10</td>
<td>125</td>
<td>18-36</td>
</tr>
</tbody>
</table>

- Do not discontinue abruptly (≥ 7 days)

Corticosteroids

Adverse Effects

- Nausea/vomiting
 - Give with food
- Increased appetite
- Hyperglycemia
- Confusion, nervousness, depression, mood changes
- Insomnia
- Edema
- Gout
- Osteoporosis
 - Consider calcium/vitamin D supplement
- Hyperlipidemia
- Hypertension
- Impaired wound healing

Disease-modifying Antirheumatic Drugs (DMARDs)

- Methotrexate
 - Inhibits cytokine production and purine biosynthesis = reduction in inflammation
 - 1st line in the treatment of RA
 - Available PO, IV, subQ
 - Onset of action: 3-4 weeks
 - Typically dosed once a week or split dosing (>15mg/week)
 - Renally eliminated
DMARDs

- **Methotrexate**
 - Adverse effects: nausea/vomiting/diarrhea, thrombocytopenia, leukopenia, ↑ LFTs, pulmonary fibrosis
 - Can induce folic acid deficiency
 - Give with 1mg/day to reduce adverse effects
 - Monitoring
 - CBC w/platelets, LFTs every 1-2 months
 - Levels rarely obtain, usually reserved for high dose (hematologic malignancies)

https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=8f1260de-b60c-4f0e-8af6-0e957b0a281b

DMARDs

- **Sulfasalazine**
 - Sulfapyridine ↓ erythrocyte sedimentation rate and C-reactive protein
 - Used in RA (combination), IBD, spondyloarthritis
 - Available PO
 - On set of action: 4-9 weeks
 - Dose: 500 mg daily x 1 week then ↑ the dose by 500 mg daily on a weekly basis until a dose of 2 g daily (divided doses) is achieved

DMARDs

- **Sulfasalazine**
 - Adverse effects
 - Hepatotoxicity, rash
 - Usually occur within the first 12 weeks of treatment
 - Dose related: nausea/vomiting/diarrhea, headache, leukopenia
 - Monitoring
 - Glucose-6-phosphate dehydrogenase (G6PD) before initiating therapy
 - CBC, LFTs every 1-2 months and after increasing dose

DMARDs

- **Hydroxychloroquine**
 - ↓ cytokine production, lymphocyte proliferation, and autoantibody production
 - Used in lupus and RA
 - Available PO
 - Onset of action: 1-3 months
 - Dose
 - Lupus: 200mg – 400mg (daily or divided doses)
 - RA: 400mg – 600mg (daily or divided doses)

DMARDs

• Hydroxychloroquine
 – Adverse effects
 • Corneal deposits, retinopathy
 • Pruritic maculopapular lesions, hyperpigmentation,
 • Dose related: nausea/vomiting/diarrhea, headache
 – Monitoring
 • Eye examination at baseline and yearly
 • No routine lab monitoring required

DMARDs

• Leflunomide
 – Inhibits T-cell proliferation and production of B lymphocytes by inhibiting the production of multiple tyrosine kinase
 – Interferes with viral assembly
 – Used in RA, Crohn’s disease, psoriatic arthritis, transplant (active BK virus or CMV)

Immunopharmacology. 2000;47:291-298
DMARDs

<table>
<thead>
<tr>
<th>Leflunomide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available PO</td>
</tr>
<tr>
<td>Onset of action: 3-4 weeks</td>
</tr>
<tr>
<td>Dose</td>
</tr>
<tr>
<td>RA</td>
</tr>
<tr>
<td>100mg daily x 3 days then 20mg daily or 10-20mg/daily without loading dose</td>
</tr>
<tr>
<td>Transplant</td>
</tr>
<tr>
<td>100mg daily x 3 days then 20-60mg daily</td>
</tr>
</tbody>
</table>

American Journal of Transplantation. 2011;11:1079-1084
Immunopharmacology. 2000;47:291-298

DMARDs

<table>
<thead>
<tr>
<th>Leflunamide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse effects</td>
</tr>
<tr>
<td>Nausea/vomiting/diarrhea, alopecia</td>
</tr>
<tr>
<td>Leukopenia, anemia, thrombocytopenia</td>
</tr>
<tr>
<td>Monitoring</td>
</tr>
<tr>
<td>CBC and LFTs monthly initially then every 8 weeks</td>
</tr>
<tr>
<td>Teriflunomide (leflunomide metabolite) can be monitored in transplants: target goal > 50,000ng/mL</td>
</tr>
</tbody>
</table>

American Journal of Transplantation. 2011;11:1079-1084
Dialysis & Transplantation. 2011;40:102-107
Immunopharmacology. 2000;47:291-298
Biologic DMARDs

- **Growing field**
 - Kinase inhibitors
 - TNF alpha inhibitors
 - IL-6 receptor inhibitors
 - T cell costimulatory modulators
- **Used in RA, Crohn’s disease, psoriatic arthritis**
- **Typically available subq or IV**
- **Risk of infection and malignancy**

Antimetabolites

- **Mycophenolate**
 - Interferes with purine synthesis \rightarrow T-cell and B-cell proliferation
 - Used in transplant immunosuppression, autoimmune hepatitis, lupus nephritis

Pharmacotherapy. 1997;17:1178-1197.
Antimetabolites

- **Mycophenolate**
 - Available PO (tablets, capsules, liquid) and IV
 - Dosing
 - *Cellcept* (mycophenolate mofetil): 500mg-1500mg Q12H
 - *Myfortic* (mycophenolate sodium): 360mg-1080mg Q12H
 - Conversion: Myfortic 720mg = Cellcept 1000mg

Pharmacotherapy. 1997;17:1178-1197.

Antimetabolites

- **Mycophenolate**
 - Adverse effects
 - Nausea/vomiting/diarrhea
 - May be less with mycophenolate sodium (Myfortic)
 - Leukopenia, thrombocytopenia
 - Headache
 - Hypertension
 - Monitoring
 - CBC monthly
 - No correlation between drug levels and prevention of rejection/efficacy and toxicity
Antimetabolites

• Mycophenolate
 – REMS program
 • Risk of taking mycophenolate and pregnancy
 – Increased risk of miscarriage in the 1st trimester
 – Increased risk of congenital malformations
 • https://www.mycophenolaterems.com/

Antimetabolites

• Azathioprine
 – Inhibits purine synthesis
 – Used in RA, transplant immunosuppression, lupus, IBS
 – Available PO and IV (been on backorder)
 – Dose
 • 1-3 mg/kg/day or 50-150mg daily

https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/016324s034s035lbl.pdf
Antimetabolites

• Azathioprine
 – Adverse effects
 • Leukopenia, thrombocytopenia (dose dependent)
 • Nausea/vomiting
 – Give with food
 – Monitoring
 • CBC monthly
 • No correlation between drug levels and prevention of rejection/efficacy and toxicity

https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/016324s034s035lbl.pdf

Calcineurin Inhibitors

• Cyclosporine (CSA)
 – Inhibits activation of T-cells
 – Used in transplant immunosuppression, ulcerative colitis, lupus, RA, psoriasis
 – Available PO (capsule, oral solution) and IV
 – Dosing
 • Neoral (modified cyclosporine) is not bioequivalent to Sandimmune (cyclosporine)
 – Absorption of Sandimmune can be erratic; increased bioavailability with Neoral
 • 1-5 mg/kg/day (divided into BID dosing)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/050715s035,050716s038lbl.pdf
Calcineurin Inhibitors

• CSA
 – Drug interactions (inhibitor and substrate of CYP3A4 and P-glycoprotein)
 • CYP3A4
 – Inhibitors: atorvastatin, amlodipine, amiodarone, fluconazole, etc.
 – Inducers: carbamazepine, phenytoin, rifampin, phenobarbital
 • Grapefruit and grapefruit juice (↑ CSA levels)

https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/050715s035,050716s038lbl.pdf

Calcineurin Inhibitors

• CSA
 – Adverse effects
 • More nephrotoxicity but less neurotoxicity than tacrolimus (tremor, seizures)
 • Hypertension, hyperlipidemia
 • Hair growth

https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/050715s035,050716s038lbl.pdf
Calcineurin Inhibitors

- **CSA**
 - Monitoring
 - Chem-7 and BP every 2 weeks for the first 3 months then monthly
 - Troughs and C2 levels (2 hours post dose) have been used
 - Important to clarify goals

https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/050715s035,050716s038lbl.pdf

Calcineurin Inhibitors

- **Tacrolimus (TAC)**
 - Inhibits activation of T-cells
 - Used in transplant immunosuppression, RA, Crohn’s disease, psoriasis
 - Shown to have better outcomes than cyclosporine in transplant immunosuppression
 - Available PO (capsule, extended release capsule) and IV

Calcineurin Inhibitors

- Tacrolimus (TAC)
 - Dosing
 - Oral: 0.05-0.15 mg/kg/day in two divided doses
 - IV: 0.01-0.02 mg/kg/24 hours (continuous infusion)
 - Drug interactions (inhibitor and substrate of CYP3A4 and P-glycoprotein)
 - CYP3A4
 - Inhibitors: atorvastatin, amlodipine, amiodarone, fluconazole, etc.
 - Inducers: carbamazepine, phenytoin, rifampin, phenobarbital
 - Grapefruit and grapefruit juice (↑ TAC levels)

Calcineurin Inhibitors

- TAC
 - Adverse effects
 - Neurotoxicity (tremors and seizures) → more common in TAC vs CSA
 - Nephroxicity (less than CSA)
 - Hyperkalemia, hypomagnesemia
 - Hyperglycemia, hypertension (more common in CSA)
 - Alopecia
 - Try Rogaine or biotin supplementation

Calcineurin Inhibitors

• TAC
 – Monitoring
 • Chem-7 every 2 weeks for the first 3 months then monthly
 • Troughs are routinely utilized
 • Clarify trough goals

mTOR

• Sirolimus and everolimus
 – Inhibit T-cell proliferation
 – Used in transplant immunosuppression
 – Everolimus has better bioavailability and a short t1/2 compared to sirolimus (30 vs. 60 hours)
 – Available PO (tablet, suspension)
 – Dosing
 • Sirolimus: 0.5-5mg daily
 • Everolimus: 0.5-1mg Q12H

\textit{Drugs.} 2007;67:369-391. \\
\textit{Transplantation.} 2012;94:659-668.
mTOR

- Sirolimus and everolimus
 - Drug interactions (substrate of CYP3A4 and P-glycoprotein)
 - CYP3A4
 - Inhibitors: atorvastatin, amlodipine, amiodarone, fluconazole, etc.
 - Inducers: carbamazepine, phenytoin, rifampin, phenobarbital
 - Grapefruit and grapefruit juice (↑ levels)

Drugs. 2007;67:369-391.

mTOR

- Sirolimus and everolimus
 - Adverse effects
 - Leukopenia and thrombocytopenia (dose dependent)
 - Hyperlipidemia
 - Proteinuria
 - Increased LFTs (dose dependent and reversible)
 - Abnormal wound healing (reported more with sirolimus)

Drugs. 2007;67:369-391.
mTOR

• Sirolimus and everolimus
 – Monitoring
 • CBC, lipid profile, quantitative monitoring of urinary protein excretion routinely
 • Troughs are routinely utilized
 • Clarify trough goals

Drugs. 2007;67:369-391.
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021083s062,021110s081lbl.pdf

Immunosuppressant Medications

Brian C. Keller, MD, PhD
Assistant Professor of Medicine
Division of Pulmonary, Critical Care & Sleep Medicine
The Ohio State University Wexner Medical Center
Infection ppx: *Pneumocystis jiroveci*

Risk factors:
- Corticosteroids > 15 mg/day
- High-intensity immunosuppression
- Age > 65 years
- Coexisting lung disease
- Treatment of rejection
- CMV infection
- Lymphopenia
- Low albumin level
- Hypogammaglobulinemia

Drugs:

<table>
<thead>
<tr>
<th>Mechanism of Action</th>
<th>Spectrum of Activity</th>
<th>Prophylaxis Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMX-TMP</td>
<td>Inhibits fungal replication</td>
<td>PCP</td>
</tr>
<tr>
<td>Dapsone</td>
<td>Inhibits fungal replication</td>
<td>PCP</td>
</tr>
<tr>
<td>Atovaquone</td>
<td>Inhibits fungal cell energy production</td>
<td>PCP</td>
</tr>
<tr>
<td>Pentamidine</td>
<td>Inhibits fungal replication</td>
<td>PCP</td>
</tr>
</tbody>
</table>

Crit Care Nurs Q 2017;40:383

Infection ppx: Other fungal infections

<table>
<thead>
<tr>
<th>Mechanism of Action</th>
<th>Spectrum of Activity</th>
<th>Prophylaxis Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluconazole</td>
<td>Inhibits sterol synthesis</td>
<td>Most C. albicans Select non-albicans</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>Inhibits sterol synthesis</td>
<td>Most C. albicans Select non-albicans Aspergillus spp.</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>Inhibits sterol synthesis</td>
<td>Candida spp. Aspergillus spp.</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>Inhibits sterol synthesis</td>
<td>Candida spp. Aspergillus spp. Mucormycoses spp.</td>
</tr>
<tr>
<td>Nystatin</td>
<td>Disrupts fungal cell wall</td>
<td>Most C. albicans</td>
</tr>
<tr>
<td>Echinocandins</td>
<td>Inhibit fungal cell wall synthesis</td>
<td>Candida spp. Aspergillus spp.</td>
</tr>
</tbody>
</table>

Crit Care Nurs Q 2017;40:383
Infection ppx: Viral infections

- Cytomegalovirus (CMV)
- Herpes simplex virus (HSV)
- Varicella zoster virus (VZV)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Mechanism of Action</th>
<th>Spectrum of Activity</th>
<th>Prophylaxis Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acyclovir</td>
<td>Prevents viral replication by disrupting DNA</td>
<td>HSV, VZV</td>
<td>400 mg BID</td>
</tr>
<tr>
<td>Valacyclovir</td>
<td>Same as acyclovir; better pharmacokinetics</td>
<td>HSV, VZV</td>
<td>500 mg BID</td>
</tr>
<tr>
<td>Valganciclovir</td>
<td>Inhibits viral replication (blocks DNA synthesis)</td>
<td>CMV, HSV, VZV</td>
<td>900 mg daily or 450 mg BID</td>
</tr>
</tbody>
</table>

Immunization considerations

- Recommend vaccination at time of diagnosis or prior to transplant

- Variable vaccination response with immunosuppression
 - Affected by depth and duration of immunosuppression
Inactive vaccines

- No increased risk of vaccine reaction
- No worsening or reactivation of underlying disease or development of allograft rejection
- Include recombinant, subunit, toxoid, polysaccharide, conjugated polysaccharide, inactivated or heat-killed vaccines

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Influenza</th>
<th>Td/Tdap</th>
<th>HPV</th>
<th>PCV13</th>
<th>PPSV23</th>
</tr>
</thead>
<tbody>
<tr>
<td>HepA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HepB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MenB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hib</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Follow routine vaccine schedule (per CDC)
- Household contacts should also be vaccinated

Best Pract Res Clin Rheum 2015;29:306

Live attenuated vaccines, the jury is still out

- Relatively few studies of live vaccines in setting of immunosuppressive therapy
- Most studies suggest live vaccines are safe, but...
- Per CDC, live vaccines (MMR, VAR, HZV) contraindicated
- Serious vaccine-related adverse outcomes do occur, including death
- While live vaccines are generally discouraged in setting of immunosuppressive therapy, risks and benefits must be weighed on an individual basis.

Vaccine 2017;35:1216
Pregnancy and immunosuppression

- **Category C**: adverse fetal effects in animals; insufficient human data
 - Corticosteroids
 - Cyclosporine A
 - Tacrolimus
 - Sirolimus
 - Everolimus
 - Hydroxychloroquine

- **Category D**: evidence of human fetal risk; benefit of drugs may outweigh risk
 - Azathioprine
 - Mycophenolate

- **Category X**: contraindicated
 - Methotrexate
 - Leflunomide

Clinical Pearls

- **Balance effectiveness with risk of infection and malignancy**
 - Sun protection, regular screening
- **Typically advocate against the use of herbs and homeopathic medications**
 - Drug interactions
 - Inability to verify Good Manufacturing Practices

[Link to blog post](http://blogs.oregonstate.edu/linuspaulinginstitute/2015/02/24/whats-supplement-bottle/)
Immunosuppressants

- You may see your patients on a combination of therapies
- Regularly communicate with the primary prescriber of the immunosuppressants
 - Ongoing labs
 - Status of patient