Adult Congenital Heart Disease for the Internist

Saurabh Rajpal, MBBS, MD
Assistant Professor
Department of Internal Medicine
Division of Cardiovascular Medicine
The Ohio State University Wexner Medical Center

Objectives

- To discuss the increasing prevalence of adult congenital heart disease
- To discuss the common congenital heart disease diagnoses encountered in primary care clinics
- To discuss strategies for lifelong care of adult patients with congenital heart disease

Why Should the Internists Care?

55-140,000 new pts/yr
9% increase/yr

EXPLOSION of a “Life-Long” Disease Burden

CHD prevalence 12/1000 children
CHD prevalence 6.07 / 1000 adults
Estimated Survival- Era Effect

Moons et al. Circulation 2010

Trends in ACHD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialized ACHD Centers</td>
<td>68</td>
<td>94</td>
<td>126</td>
</tr>
<tr>
<td>Patient Visits</td>
<td>55777</td>
<td>5568</td>
<td>110740</td>
</tr>
<tr>
<td>Publications</td>
<td>4373</td>
<td>6281</td>
<td>6281</td>
</tr>
</tbody>
</table>

Richard A. Krasuski, and Thomas M. Bashore Circulation. 2016;134:110-113

ACHD Patients- Common Issues

- Quality of life
- Transition
- Birth Control
- Pregnancy and CHD
- Dental Issues
- Exercise
- Hep C
- Pulmonary Hypertension
- Heart Failure
- Arrhythmias
- Neurocognitive issues
- Advance care planning and advanced directives

Atrial Septal Defect

https://www.cdc.gov/ncbddd/heartdefects/AtrialSeptalDefect-graphic2.html
Physical Exam – Atrial Septal Defect

- Hyperdynamic precordium
- Loud P2- Pulm HTN
- Signs of RHF rare
- Widely split and fixed S2

Murmurs in ASD
- Soft SEM- LUSB
- Diastolic rumble over LLSB- increased flow TV
- HSM at LLSB- TR

EKG

- Secundum ASD
 - Incomplete RBBB
 - Right Axis Deviation
- Primum ASD
 - Incomplete RBBB
 - Left Axis deviation

ASD – Paradoxical Embolism

- Myocardial Infarction and PE after IVDU

ASD and Pulmonary Hypertension

- [Imaging examples]
Associated Anomalies

- Anomalous pulmonary veins
- VSD
- Mitral regurgitation with primum ASDs due to cleft valve

RV Dilation

<table>
<thead>
<tr>
<th>RV Dilation Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVEDV: 145 ml/m²</td>
</tr>
<tr>
<td>RVEF: 61%</td>
</tr>
<tr>
<td>LVEDV: 102 ml/m²</td>
</tr>
<tr>
<td>LVEF: 56%</td>
</tr>
<tr>
<td>Qp/Qs: 1.1</td>
</tr>
<tr>
<td>TR fraction: 49%</td>
</tr>
</tbody>
</table>

Etiologies of RV Dilation

- Tricuspid regurgitation
- Pulmonary regurgitation
- Pulmonary artery hypertension
- Shunt Lesions
- Myocardial abnormalities
 - Uhl’s anomaly
 - ARVC
 - Ventricular dysfunction

Inferior Sinus Venosus – ASD
ASD- Indications for Closure

- Significant left-to-right shunt
 - right ventricular volume overload
 - with or without symptoms
 - without pulmonary hypertension*
- Orthodeoxia-platypnea
- Paradoxical embolism
- At the time of another cardiac surgery

ASD Closure

- Surgical
- Transcatheter

Other Issues with ASDs

- Periodic follow up
- Arrhythmias (also with repaired)
- Pulmonary hypertension
- Scuba diving
- High altitude exposure

Patent Foramen Ovale

![Diagram of Patent Foramen Ovale]

Drawn by: Kjetil Lenes
PFO - To close or not to close..

- Patient Factors
 - Hypercoagulable state
 - Atrial Fibrillation
 - ASCVD Risk Factors
 - Presence of devices in the RV
- PFO factors
 - Shunt size
 - Atrial Septal Aneurysm

Ventricular Septal Defect

1. Conoventricular
2. Membranous
3. Inlet
4. Muscular

Source: Centers for Disease Control and Prevention

Physical Exam and EKG

- Smaller the VSD, louder the murmur
- Holosystolic plateau-shaped murmur at LLSB
- Majority of patients with isolated ventricular septal defect have normal EKG
- EKG signs of LAE and LVH – maybe

VSD

Source: Centers for Disease Control and Prevention
Indications for Closure of VSD

- Symptoms of heart failure
- Large LV
- Normal PVR

VSD Closure in Adults

- Intervention is rarely required
- Small VSDs do not create a clinically important shunt
- Adult patients with large VSDs and irreversible pulmonary vascular disease
 - Need expert assessment

Lifelong Follow Up - VSD

- More often repair of the VSD
 - Endocarditis
 - Aortic insufficiency
 - Pulmonary insufficiency
- Surgical repair remains the gold standard for treatment of VSD

Gerbode Defect

- [Image of Gerbode Defect]
Patent Ductus Arteriosus

Significant Left to Right Shunt
- Symptoms
- LA and LV enlargement

Endarteritis

Source: Patent Ductus Arteriosus (PDA) - American Heart Association

Coarctation of Aorta

- Familial risk
- Turner syndrome
- Associated anomalies
 - ASD
 - VSD
 - Bicuspid aortic valve
- Hypertension
- Brachial-femoral delay
- Premature CAD, Stroke
- Intracranial aneurysms
- Surgery, Balloon Angioplasty, Stent

Courtesy: Ohio Fetal Medicine Collaborative

Tetralogy Of Fallot (TOF)

Unrepaired

Repaired

EKG in Repaired TOF
Issues in Adults with Repaired TOF

- Pulmonary Regurgitation
- Atrial Arrhythmias
- Ventricular Arrhythmias
- Sudden Cardiac Death
- Residual VSD
- LV Dysfunction and left heart failure
- Right Heart Failure

Adults with Repaired TOF

- EP Procedures
- Pulmonary Valve Replacement
 - Transcatheter
 - Surgical
- Lifelong follow up with ACHD
Ebstein Anomaly

- Tricuspid regurgitation
- Right heart failure
- ASD - O2 desaturation
- Surgery:
 - Tricuspid valve replacement
 - Cone procedure
- Atrial arrhythmias
- Atrial fibrillation
- Atrial flutter
- WPW
- Sinus node dysfunction
- Sudden cardiac death

Transposition of Great Arteries

42 year old female with D-TGA s/p atrial switch w/syncope
D-TGA Atrial Switch

Complex Congenital Heart Disease

- Eisenmenger Syndrome
- Unrepaired Cyanotic Congenital Heart Disease
- Fontan and Single Ventricle
- Patients Palliated with Systemic to Pulmonary Artery Shunts

Single Ventricle Anatomy

- HLHS
- TA
- DORV
- DILV
- Unbalanced AVC
- PA
- Ebstein

Surgical Shunts
- BT
- Central
- Waterston
- Potts

PVR > < SVR
Qp:Qs = 0.9:1

Eisenmenger Syndrome

Courtesy: Ohio Fetal Medicine Collaborative
Complex Congenital Heart Disease

- 6 monthly to yearly ACHD follow-up
- Know and check O2 saturation regularly
- Check iron stores periodically
- Monitor renal and liver function
- Most have restrictive or other lung disease
- Dental follow up
- High risk of stroke and brain abscess in cyanotic patients

ACHD Patients-Common Issues

<table>
<thead>
<tr>
<th>Quality of life</th>
<th>Pulmonary Hypertension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transition</td>
<td>Heart Failure</td>
</tr>
<tr>
<td>Birth Control</td>
<td>Arrhythmias</td>
</tr>
<tr>
<td>Pregnancy and CHD</td>
<td>Neurocognitive issues</td>
</tr>
<tr>
<td>Dental Issues</td>
<td>Advance care planning and advanced directives</td>
</tr>
<tr>
<td>Exercise</td>
<td></td>
</tr>
<tr>
<td>Hep C</td>
<td></td>
</tr>
</tbody>
</table>

Quality of life

- Quality of a person’s life is related to how satisfied they are with their life overall
- Functional status has to do with a person’s ability to do normal daily activities and perform their roles in life
- Disability paradox
- Response shift
- Sense of coherence

Pregnancy

- High Risk
 - Aortopathies including Marfan syndrome
 - Severe left sided obstructive lesions
 - Fontan
 - Eisenmenger
 - Pulmonary Hypertension
 - Severe LV Dysfunction
Birth Control

- Hypercoagulable states
- Low dose progestin pills
- IUDs
- Complex congenital heart disease patients should be evaluated in tertiary centers

Exercise

SBE Prophylaxis

- Prosthetic heart valves
- Prosthetic material used for cardiac valve repair
- Prior history of IE
- Unrepaired cyanotic congenital heart disease
- Repaired congenital heart disease with residual shunts or valvular regurgitation at the site or adjacent to the site of the prosthetic patch or prosthetic device
- Repaired congenital heart defects with catheter-based intervention involving an occlusion device or stent during the first six months after the procedure
- Valve regurgitation due to a structurally abnormal valve in a transplanted heart

Advance Care Planning and Advance Directives

The place for these difficult conversations should not be in the Intensive Care Unit (ICU)

- 50% of ACHD patients die in the hospital
- Of these, two-thirds die in the intensive care setting and almost a half were on life support
- Only 10% of patients in ACHD care had an end-of-life discussion

Tobler et al Am J Cardiol 2012
Tobler et al Palliative Medicine 2012
Current Concerns
Neurodevelopmental Outcomes

- 60 young adults with arterial switch operation re-evaluated at a mean age of 16.9 ± 1.7 years
- Neurologic impairment in 10%
- Periventricular leukomalacia was detected in >50%; its severity correlated with the grade of neurologic impairment
- Magnetic resonance imaging demonstrated moderate or severe structural brain abnormalities in 32% of the patients

New Guidelines

2018 AHA/ACC Guideline for the Management of Adults With Congenital Heart Disease
A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines
Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons

JACC 2018