Managing Complications of Chemotherapy

Erin Bertino, MD
Associate Professor of Internal Medicine
Department of Internal Medicine
Division of Medical Oncology
The Ohio State University Wexner Medical Center

Cancer is not a new issue

- First known case of cancer
- Ancient Egyptian papyrus included description of 8 cases of tumor or ulcers

Cancer is common

- Lifetime probability of cancer (any site) is 1 in 3
- Cancer remains the second leading cause of death
- Treatment is improving cancer survival but toxicity is a persistent issue

Estimated New Cancer Cases* in the US in 2019

<table>
<thead>
<tr>
<th>Cancer Site</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>22%</td>
<td>30%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>8%</td>
<td>7%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of skin</td>
<td>7%</td>
<td>6%</td>
</tr>
<tr>
<td>Kidney & ureter</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Non-Hodgkin</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Pancreas</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>All other sites</td>
<td>22%</td>
<td>21%</td>
</tr>
</tbody>
</table>

*Estimated by Amer Cancer Society

The Early Days of Chemotherapy

Nitrogen Mustard: From weapon of destruction in World War I to weapon against cancer

Blood and bone marrow in mustard gas poisoning

Sidney Farber: The Father of Modern Chemotherapy

(CC BY 4.0) Auckland Museum
Timeline: Development of cancer therapeutics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Single agent chemotherapy</td>
<td>Combination chemotherapy</td>
<td>Combination chemotherapy emerges</td>
<td>Intro of oral chemotherapy treatments</td>
<td>New era of molecular biology including biologics</td>
<td>First immunotherapy drug approved to 24+ biomarkers</td>
</tr>
</tbody>
</table>

Characteristics of cancer cell
- Produces its own growth factors
- Not inhibited by growth factor inhibitors
- Evade apoptosis (programmed cell death)
- Can divide infinitely
- Can produce its own blood vessels (angiogenesis)
- Can invade tissue and metastasize
- Can evade the immune system

Treating Cancer is Complex

Unique characteristics of a cancer cell
- Produces its own growth factors
- Not inhibited by growth factor inhibitors
- Evade apoptosis (programmed cell death)
- Can divide infinitely
- Can produce its own blood vessels (angiogenesis)
- Can invade tissue and metastasize
- Can evade the immune system

- Cancer cells are abnormal in multiple ways
- Treatment aims to exploit these growth pathways as weaknesses
- We will review:
 - Cytotoxic Chemotherapy
 - Targeted Therapy
 - Immunotherapy

Cancer Therapy is Evolving

- **Cytotoxic chemotherapy**
- **Targeted Therapy**
- **Immunotherapy**
- **Monoclonal Antibodies**
- **Tyrosine kinase inhibitors**
- **Hormonal therapies**
- **Checkpoint inhibitors**: CTLA4 and PD/PDL1
- **Hybrid Therapies**: Chemo-Immunotherapy
Chemotherapy: Mechanism of action

- Chemotherapy = cytotoxic medications
- Alkylating Agents
- Platinum agents
- Anti-metabolites
- Nucleoside analogs
- Topoisomerase inhibitors
- Anti-Microtubule agents

Chemotherapy Toxicities

<table>
<thead>
<tr>
<th>Common Side Effects</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea and/or vomiting</td>
<td>Anti-emetics</td>
</tr>
<tr>
<td>Mucositis</td>
<td>Cryotherapy, mouth rinses</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>Anti-motility agents</td>
</tr>
<tr>
<td>Alopecia</td>
<td>Cryotherapy</td>
</tr>
<tr>
<td>Cytopenias, including anemia and neutropenia</td>
<td>Prophylactic G-CSF (neupogen/neulasta), transfusion support</td>
</tr>
</tbody>
</table>

Specific Toxicities - Acute

- Busulfan and Bleomycin
 - Pulmonary fibrosis/pneumonitis
- Cisplatin
 - Ototoxicity
 - Nephrotoxicity
- 5-Fluorouracil (5-FU)
 - Hand-foot syndrome
- Oxaliplatin and Paclitaxel
 - Sensory neuropathy
 - Vincristine/vinblastine
 - Sensory-motor neuropathy
- Irinotecan
 - Diarrhea

Chronic Toxicities of Chemotherapy

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Drugs (examples)</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiomyopathy</td>
<td>Doxorubicin, Daunorubicin</td>
<td>Lifetime limit on drug exposure</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td></td>
<td>Monitoring on treatment</td>
</tr>
<tr>
<td>Sensory Neuropathy</td>
<td>Taxanes, Platinum drugs</td>
<td>Gabapentin, Lyncya</td>
</tr>
<tr>
<td>Infertility</td>
<td>Alkylators, Hormonal agents</td>
<td>Sperm banking or Egg harvest</td>
</tr>
<tr>
<td>Sexual dysfunction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary Malignancies</td>
<td>Alkylators (5-7 years), Topoisomerase inhibitors (1-3 years)</td>
<td>Monitor blood counts, Cancer screening</td>
</tr>
<tr>
<td>Chronic fatigue</td>
<td>Multiple agents and radiation</td>
<td>Exercise, healthy weight</td>
</tr>
</tbody>
</table>
Managing Complications of Chemotherapy

Edmund Folefac, MBCHB
Assistant Professor – Clinical
Department of Internal Medicine
Division of Medical Oncology
The Ohio State University Wexner Medical Center

Targeted Therapy

To understand how these therapies work, we must first understand:

1) how the normal cell operates and
2) what makes cancer cells different

Chemotherapy vs targeted therapy

Targeted Therapies Pick Out Cancer Cells

Ideal Characteristics of a Targeted Therapy

- Target should be essential to the malignant cell survival
- Target is not expressed on normal cells
- Target inhibition leads to malignant cell death with minimal effect on normal cell function
- Target can be reliably identified with available testing
- Inhibition of target should correlate with clinical benefit
Current Targeted Therapies

<table>
<thead>
<tr>
<th>Class of Drug</th>
<th>Mechanism of Action</th>
<th>Examples</th>
<th>Cancer Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormonal therapy</td>
<td>Estrogen blockade</td>
<td>Tamoxifen, aromatase inhibitors, Leuprolide,</td>
<td>Breast Cancer</td>
</tr>
<tr>
<td></td>
<td>Testosterone blockade</td>
<td>bicalutamide</td>
<td>Prostate Cancer</td>
</tr>
<tr>
<td>Tyrosine Kinase</td>
<td>Small molecule</td>
<td>Dabrafenib (BRAF), Erlotinib (EGFR), Pazopanib</td>
<td>Melanoma</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>blocks cell signaling pathway</td>
<td>(VEGF), Palbociclib (PARP inhibitor)</td>
<td>Lung cancer, Kidney cancer, Breast cancer</td>
</tr>
<tr>
<td>Monoclonal Antibodies</td>
<td>Antibody binding to cell signaling pathway</td>
<td>Cetuximab (EGFR), Bevacizumab (VEGF), Trastuzumab</td>
<td>Head and neck cancer, Lung cancer, Breast cancer</td>
</tr>
</tbody>
</table>

Targeted Therapy Toxicity

Toxicity may be “on target” or “off target”

- **“On target” toxicity**: effect of the drug on a target that is expressed by both the cancer and normal tissue cell
- **“Off target” toxicity**: result when a drug affects the target essential for normal tissue cells but not essential for cancer cell survival – “bystander effect”

Toxicity also depends on drug target:
- Skin (rash)
- Gastrointestinal/Liver (diarrhea, hepatitis)
- Cardiac (cardiomyopathy, QT changes)
- Renal
- Others may also occur – ocular, endocrine, etc

Targeted Therapy Skin Toxicity

Acneiform

- Common with multiple targeted agents especially EGFR– TKI and mAB
- Tends to be dose dependent
- Signs and Symptoms:
 - Pruritis
 - Diffuse rash – commonly on face/chest/back
 - Often occurs in seborrheic areas
 - May be worsened by sun exposure
- Associated with increased risk of Staph super-infection

Other skin changes

- Rash (acneiform,)
- Nail changes,
- hand-foot syndrome,
- Hyperpigmentation
- Dry skin
- Telangiectasia
Skin Toxicity: Prevention and Treatment

- Keep skin moist
- Avoid sun exposure or use sunscreen
- Apply emollient generously
- Topical steroids may be useful
- Topical Antibiotics: Clindamycin, metronidazole
- Oral minocycline, tetracycline and doxycycline may be necessary in some cases
- Antihistamines for itching not responsive to topical steroids

GI Toxicities

- Diarrhea – very common with targeted therapy
 - EGFR inhibitors in particular
- Intestinal bleeding and perforations
 - Primarily with VEGF inhibitors
- Hepatotoxicity
 - Common with ALK inhibitors
- Elevated pancreatic enzymes

Diarrhea Management

- First - Exclude other causes!
- Loperamide
- Octreotide (SC)
- Hold drug or dose reduction by oncology
- Severe diarrhea
 - Hospitalization
 - Replace electrolytes

Cardiovascular Toxicities

- Hypertension is one of the most common cardiac toxicities
 - Commonly associated with VEGF inhibitors
- HTN management: ACE-inhibitors are a preferred agent
- Dose reduction or holding drug may also be required
- Avoid these drugs in patients with uncontrollable HTN
- QT prolongation is another potential toxicity
- Thromboembolic disease and Bleeding are also possible
Cardiac Toxicity of Targeted Therapy

- Cardiomyopathy
 - Type I: Kills cardiac cells but have minimal effects
 - Type II: Prevents coordinated contraction of cardiac myofibrils but do not kill cardiac cells
- Cardiotoxic drugs require heart function monitoring

Renal Toxicity

- Multiple Renal Toxicities may be seen, particularly with VEGF inhibitors
- Glomerulonephritis: VEGF is expressed on nephrons – VEGF inhibitors are associated with proteinuria
- Minimal change, membranoproliferative and cryoglobulinemic /focal segmental nephritis
- Tubular acidosis, interstitial nephritis, Distal tubular dysfunction, Microangiopathy renal thrombosis
- Interstitial nephritis- allergic nephritis(fever, rash, proteinuria, eosinophilia and eosinophiluria
- Acute tubular necrosis, crystal nephropathy, tubular atrophy, interstitial fibrosis

Examples of some targeted therapies and their renal toxicities

<table>
<thead>
<tr>
<th>Monoclonal antibodies</th>
<th>Proteinuria</th>
<th>Nephrotic syndrome</th>
<th>Glomerulonephritis</th>
<th>Interstitial nephritis</th>
<th>Thrombotic microangiopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bevacizumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cetuximab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panitumumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tyrosine kinase inhibitors</th>
<th>Proteinuria</th>
<th>Interstitial nephritis</th>
<th>Thrombotic microangiopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunitinib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorafenib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vatalanib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axitinib</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>mTOR inhibitors</th>
<th>Proteinuria</th>
<th>Acute renal dysfunction</th>
<th>Focal glomerulosclerosis</th>
<th>Acute tubular necrosis</th>
<th>Thrombotic microangiopathy</th>
</tr>
</thead>
</table>
BE1 delete?
Bertino, Erin, 2/26/2019
Managing Complications of Chemotherapy

Erin Bertino, MD
Associate Professor of Internal Medicine
Department of Internal Medicine
Division of Medical Oncology
The Ohio State University Wexner Medical Center

Current Immunotherapy Agents

- PD-1/PD-L1 Inhibitors
 - Pembrolizumab
 - Atezolizumab
 - Durvalumab
 - Avelumab
 - Cemiplimab
 - Nivolumab
- CTLA-4 Inhibitors
 - Ipilimumab
Immunotherapy Toxicity Overview

- Autoimmune toxicity may affect any organ system
- May mimic other conditions
- May be acute or delayed
- Common Toxicities (≥10%)
 - Fatigue
 - Rash/pruritis
 - Diarrhea
- Uncommon Toxicities (<10%)
 - Hepatitis
 - Pneumonitis
 - Endocrinopathies
 - Cardiac
 - Pancreatitis

Immunotherapy Toxicities – General Management

<table>
<thead>
<tr>
<th>Grade</th>
<th>Symptoms</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mild</td>
<td>Supportive measures, Continue immune therapy</td>
</tr>
<tr>
<td>2</td>
<td>Moderate</td>
<td>Supportive measures, Hold immune therapy, Add steroids* if needed</td>
</tr>
<tr>
<td>3-4</td>
<td>Severe</td>
<td>Discontinue/Delay immune therapy, Add steroids* or increase steroid dose</td>
</tr>
</tbody>
</table>

GI Toxicity

- Colitis is one of the most common toxicities
 - Any grade – 30%, severe cases <10%
 - Rule out infection, including C diff infection
 - Consider Colonoscopy for severe cases
- Hepatitis
 - Increased risk with combination therapy
 - Rule out infection, metastatic disease, steatohepatitis
- Pancreatitis
 - Amylase, lipase elevation
 - May be associated with hyperglicemia/diabetes

GI Toxicity Time is Variable

Endocrine Toxicity

- Thyroid dysfunction (>10%)
 - Replacement therapy for hypothyroidism
 - Symptom control for hyperthyroidism
- Hypophysitis (<5%)
 - Non-specific symptoms: headache, fatigue
 - Cortisol, ACTH, thyroid function testing
- Adrenal insufficiency (rare)
 - Dehydration, hypotension, hyperkalemia, hyponatremia
 - Steroid replacement
- Diabetes (rare)
 - Anti-GAD or anti-islet antibodies may be present
 - Insulin therapy may be required

Pulmonary Toxicity - Pneumonitis

- Focal or diffuse inflammation of lung parenchyma
- Onset may be early or late
- Differential includes infection, COPD exacerbation, and disease progression
- Bronchoscopy may be helpful if patient is stable
- Empiric therapy: Steroids and antibiotics

Immunotherapy Skin Toxicity

- Rash/Inflammatory Dermatitis
 - Variable: erythema, maculopapular rash, eczematous/psoriasiform
 - Differential: drug rash, infection (cellulitis), autoimmune conditions, hand-foot syndrome
- Bullous Dermatoses (rare)
 - Bullae/blisters, sloughing possible
 - Differential: drug reaction, bullous pemphigoid, infection (esp. viral), friction/trauma

Immunotherapy Skin Toxicity

- Stevens Johnson Syndrome (SJS), toxic epidermal necrosis (TEN),
 - Severe alteration to skin structure or function; mucous membrane involvement
 - Differential: drug reactions including paraneoplastic pemphigus, autoimmune blistering dermatoses
- Management: Moisturize, topical steroids, systemic steroids if severe
Rare Toxicities

• Cardiac
 ✓ May mimic heart failure or acute MI
 ✓ Cardiac MRI may be helpful
 ✓ High dose steroids may help

• Neurologic
 ✓ Range of presentations including encephalitis, Guillan-Barre, or transverse myelitis

• Ocular – Uveitis
• Rheumatologic
 ✓ Inflammatory Arthritis
 ✓ Myositis
 ✓ Sicca syndrome
• Renal
 ✓ Kidney failure may be seen

Managing Complications of Oncology Treatment - Summary

• Cancer treatment is evolving
• Chemotherapy
 ✓ May be used alone or in combination with other treatments
 ✓ Common side effects include hair loss, fatigue, nausea, mucositis, cytopenias
• Targeted Therapy
 ✓ Side effects vary depending on drug target
 ✓ Supportive care is helpful, oncology may also need to hold/adjust drug
• Immunotherapy
 ✓ Toxicities may affect any organ and may mimic other conditions
 ✓ Immunosuppression is the backbone of treatment of toxicity