Preventive Cardiology
Beyond Statins for Cardiovascular Risk Reduction

M. Wesley Milks, MD, FACC
Assistant Professor of Clinical Medicine
Division of Cardiovascular Medicine
Department of Internal Medicine
The Ohio State University Wexner Medical Center

Introduction

• Objectives
 1. Identify clinical scenarios in which statins and/or non-statin lipid lowering treatments are indicated
 2. Describe the mechanism of action of and indications for PCSK9 inhibitors, SGLT2 inhibitors, and high dose omega-3-polyunsaturated fatty acids

• No competing interests/financial relationships to disclose
• I will discuss what is currently off-label use of icosapent ethyl (Vascepa®)
• Branded Rx/OTC products shown: not an endorsement
Outline

• Recent history of and important concepts in clinical lipidology
• New ACC/AHA Blood Cholesterol guidelines: goals are back
• PCSK9 inhibition: when and how?
• SGLT2 inhibition: inducing glycosuria improves outcomes
• Marine omega-3 polyunsaturated fatty acids: fishy or not?
• Other “nutraceuticals”: is there a role?

Recent History of Preventive Cardiology

Use what you got: RCTs, epidemiological data, genetic, metabolic studies: focus on LDL-C

RCTs only! Only statins have the convincing evidence
2013 ACC/AHA Guidelines

Step 1: Decide whether there is an indication for a statin
Next steps: unclear

- Is there a goal LDL-C to achieve?
- What is the role of non-statins?
- The LDL “hypothesis”: to what extent does non-statin LDL-C lowering reduce risk?

Statin Benefit Groups

<table>
<thead>
<tr>
<th>Clinical ASCVD</th>
<th>LDL-C (\geq 190) mg/dl</th>
<th>DM, LDL-C 70-189 mg/dl, age 40-75</th>
<th>Primary prev. (10-yr risk (\geq 7.5%))</th>
</tr>
</thead>
</table>

All roads lead to STATIN

Recent History of Preventive Cardiology

Meanwhile, the National Lipid Assn. continues a risk factor and LDL-C or non-HDL-C lowering approach

Major ASCVD risk factors (HALFS)
- HTN
- Age (M≥45, F≥55 y)
- Low HDL
- FmHx early CHD (M<55, F<65)
- Smoking

Risk Category	Non-HDL-C goal	LDL-C goal
Low | < 130 mg/dl | < 100
Moderate | < 130 | < 100
High | < 130 | < 100
Very High | < 100 | < 70

ASCVD, or [Diabetes mellitus + end organ damage]

We live in an LDL-C paradigm. Why?

<table>
<thead>
<tr>
<th>Diagnosis ↓ Lipids (mg/dl)</th>
<th>Normal</th>
<th>Familial Hyperchol.</th>
<th>Metabolic Syndrome / DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total-C</td>
<td>158</td>
<td>342</td>
<td>318</td>
</tr>
<tr>
<td>HDL-C</td>
<td>59</td>
<td>49</td>
<td>23</td>
</tr>
<tr>
<td>LDL-C</td>
<td>88</td>
<td>280</td>
<td>?</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>53</td>
<td>67</td>
<td>1,621</td>
</tr>
<tr>
<td>Non-HDL-C</td>
<td>99</td>
<td>293</td>
<td>295</td>
</tr>
</tbody>
</table>

LDL-C vs. Non-HDL-C

- We live in an LDL-C paradigm. Why?

<table>
<thead>
<tr>
<th>LDL-C</th>
<th>Non-HDL-C</th>
<th>N (MACE)</th>
<th>N (Total)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 100 mg/dl</td>
<td>≥ 130 mg/dl</td>
<td>1,877</td>
<td>10,419</td>
<td>1.21 (1.13-1.29)</td>
</tr>
<tr>
<td>≥ 100 mg/dl</td>
<td>< 130 mg/dl</td>
<td>467</td>
<td>2,873</td>
<td>1.02 (0.92-1.12)</td>
</tr>
<tr>
<td>< 100 mg/dl</td>
<td>≥ 130 mg/dl</td>
<td>283</td>
<td>1,435</td>
<td>1.32 (1.17-1.50)</td>
</tr>
<tr>
<td>< 100 mg/dl</td>
<td>< 130 mg/dl</td>
<td>2,760</td>
<td>23,426</td>
<td>1.00 (Reference)</td>
</tr>
</tbody>
</table>

- Statin-treated patients who reached goals of LDL-C, non-HDL-C, both, or neither
- When discordant, non-HDL-C predicts major CV events better than LDL-C
- HRs adjusted for sex, age, smoking, DM, SBP, and trial

2016-2017 ACC Expert Consensus

- Role of non-statin therapies for LDL-C lowering in management of ASCVD risk

Step 1: Decide whether there is an indication for a statin
Step 2: Consider non-statin therapies
Step 3: Recognize non-statin indications

- Consider adherence, statin tolerance, control of risk factors
- Consider percentage LDL-C & non-HDL-C reduction and level achieved
- Consider ezetimibe, bile acid sequestrants, PCSK9i

Preventive Cardiology

Beyond Statins for Cardiovascular Risk Reduction

Kelly M. Bartsch, PharmD, BCPS, CLS
Specialty Practice Pharmacist - Ambulatory Care
The Ohio State University Wexner Medical Center

Statins

- **Dosing + Effects:**
 - Potency varies by statin and dose
 - High intensity: >50% ↓ LDL-C
 - May also decrease TRG and HDL
 - PO formulations
 - Once daily administration*
 - Newer agents can be taken at any time of day

- **Pleiotropic effects**
- **Adverse Effects:**
 - Myalgias, GI upset
- **Drug interactions**
 - Exception: fluvastatin

*exception: fluvastatin

[Image of a flowchart showing the metabolic pathway from citrate to cholesterol, with STATINS highlighted.]

Ezetimibe

Mechanism
- Blocks NPC1L1
- Inhibits enteric cholesterol absorption
- (Statins increase chol. absorption)

Dosing & effect
- 10 mg PO daily
- Expect 15-25% ↓LDL-C

Ezetimibe

- Adverse effects
 - Respiratory tract symptoms (4% vs. 2% placebo)
 - Transaminase elevations with statins (1-2%)
 - GI symptoms comparable to placebo

Dosing & effect

IMPROVE-IT

- Outcomes from non-statin driven LDL-C reduction

- 18,144 patients with acute coronary syndrome
- LDL-C at baseline: 50 to 125 mg/dl
- Randomization: simvastatin 40 mg + [ezetimibe 10 mg OR placebo]
IMPROVE-IT

- Outcomes from non-statin driven LDL-C reduction

Primary end point composite: cardiovascular death, nonfatal MI, UA requiring hospitalization, coronary revascularization (≥ 30 d after randomization), nonfatal CVA

24% additional LDL-C reduction

Median follow up 6 years

Outcome: HR 0.936 (95% CI 0.89-0.99)

PCSK9 inhibitors

Mechanism, dosing, and adverse effects

- **Mechanism**
 - Human IgG1/2 mAb that inhibits proprotein convertase subtilisin/kexin type 9 binding to LDLR
 - $T_{1/2}$ 17-20 days (alirocumab) or 11-17 (evolocumab) days

Dosing & effect

- **Alirocumab**: 75-150 mg SQ q2wk, OR 300 mg SQ q4wk
- **Evolocumab**: 140 mg SQ q2wk or 420 mg SQ q4wk
- Expect 50-70% additional ↓LDL-C

Graphic original
PCSK9 inhibitors

Mechanism, dosing, and adverse effects

- Adverse effects
 - Injection site reactions (7% vs. 5% placebo)
 - Nasopharyngitis, flu-like reaction, myalgias, new onset DM similar to placebo
 - Antibody formation
 - Rare serious allergic reactions

FOURIER: Outcomes from non-statin driven LDL-C reduction

- Enrollment: 27,564 patients with ASCVD, LDL-C ≥ 70 mg/dl receiving statin therapy
- Treatment: evolocumab 140 mg q2wk or 420 mg q4wk vs. placebo
- Outcome: [CV death, MI, CVA, hospitalization for UA, coronary revascularization]
- Follow up: median 2.2 years

PCSK9 inhibitors

FOURIER: Outcomes from non-statin driven LDL-C reduction

- Outcome: [CV death, MI, CVA, hospitalization for UA, cor. revasc.]
- Follow up: median 2.2 years

PCSK9 inhibitors

FOURIER: Outcomes from non-statin driven LDL-C reduction

- Adverse events: no significant difference (incl. new DM, neurocognitive events) except injection site reactions (2.1% vs. 1.6% placebo)

PCSK9 inhibitors

ODYSSEY OUTCOMES: Outcomes from non-statin driven LDL-C reduction

- Enrollment: 18,924 patients with acute coronary syndrome
- Uncontrolled cholesterol: LDL-C ≥ 70 or non-HDL-C ≥ 100 mg/dl on high-intensity or maximum-tolerated statin

HR 0.85 (95% CI 0.78-0.93, P<0.001)

PCSK9 inhibitors

ODYSSEY OUTCOMES: Outcomes from non-statin driven LDL-C reduction

- Treatment: alirocumab vs. placebo (targeted LDL-C 25 to 50 mg/dl)
- Outcome: [CHD death, nonfatal MI, ischemic CVA, UA req. hospitalization]
- Follow-up median 2.8 years

HR 0.85 (95% CI 0.78-0.93, P<0.001)
PCSK9 inhibitors

Outcomes from non-statin driven LDL-C reduction

<table>
<thead>
<tr>
<th></th>
<th>FOURIER</th>
<th>ODYSSEY OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary endpoint</td>
<td>CV death, MI, stroke, hospitalization for</td>
<td>CHD death, non-fatal MI,</td>
</tr>
<tr>
<td>(composite)</td>
<td>unstable angina, or cor. revascularization</td>
<td>fatal or non-fatal ischemic stroke, or UA</td>
</tr>
<tr>
<td>Treatment vs. placebo</td>
<td>9.8% vs. 11.3%</td>
<td>9.5% vs. 11.1%</td>
</tr>
<tr>
<td>Median follow up</td>
<td>2.2 years</td>
<td>2.8 years</td>
</tr>
<tr>
<td>HR</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>NNT</td>
<td>67</td>
<td>64</td>
</tr>
</tbody>
</table>

PCSK9 inhibitors: what about cost?

SUGGESTED COST-EFFECTIVE ANNUAL PRICE ($100,000-150,000 PER QALY)

- Approx. US Price (mid-2018)
- Approx. Canadian Price (USD)
Preventive Cardiology

Beyond Statins for Cardiovascular Risk Reduction

M. Wesley Milks, MD, FACC
Assistant Professor of Clinical Medicine
Division of Cardiovascular Medicine
Department of Internal Medicine
The Ohio State University Wexner Medical Center

Recent History of Preventative Cardiology

2013 ACC/AHA
2015 NLA Part 1/2
2017 Expert Consensus
2018 ACC/AHA

LDL-C or non-HDL-C goals are optional. Non-statins are included again.

 Aren't we due for a "fully updated" guideline?!

Statin Benefit Groups

<table>
<thead>
<tr>
<th>Clinical ASCVD</th>
<th>LDL-C ≥ 190 mg/dl ("severe primary")</th>
<th>Diabetes mellitus, LDL-C 70-189 mg/dl, age 40-75</th>
<th>Others: assess risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No risk assessment: high-intensity statin</td>
<td>Moderate intensity statin</td>
<td>Risk assessment to consider high intensity statin</td>
<td></td>
</tr>
</tbody>
</table>

Guideline on the Management of Blood Cholesterol

• Principles of the guideline
 — Assess ASCVD risk in each age group
 — Emphasize adherence to healthy lifestyle

At all levels:
provide a “risk discussion” as it relates to the management plan

Intermediate risk
If risk & enhancers favor statin, initiate moderate intensity statin to lower LDL-C by 30-49% (I)

High risk
Initiate high-intensity statin to reduce LDL-C by ≥ 50% (I)

Borderline risk
Risk “enhancers” guide moderate intensity statin (IIb)

- If risk decision is uncertain consider measuring CAC
 - CAC 0 and no DM, smoking, FmHx: consider no statin
 - CAC 1-99 (esp. ≥ 55yrs): statin
 - CAC ≥ 100 (75th%)iile: statin

Low risk
- Lifestyle, reduce risk factors (I)

Clinical ASCVD
- Multiple major ASCVD events (recent ACS, h/o MI, h/o CVA, PAD), OR
- Major ASCVD event + multiple high-risk conditions (age≥65, FH, h/o PCI/CABG, DM, HTN, CKD, smoking, persistently elevated LDL≥100, h/o CHF)

Very high risk?
- High-intensity/maximal statin (I)
- If LDL-C ≥ 70 mg/dl, adding ezetimibe is reasonable (IIa)
- If on maximal LDL-C lowering therapy and LDL-C remains ≥ 70 (non-HDL-C ≥ 100) mg/dl, adding PCSK9 inhibitor is reasonable (IIa)

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA
Guideline on the Management of Blood Cholesterol

Clinical ASCVD

Yes

Very high risk?

• Multiple major ASCVD events (recent ACS, h/o MI, h/o CVA, PAD), OR
• Major ASCVD event + multiple high-risk conditions (age≥65, FH, h/o PCI/CABG, DM, HTN, CKD, smoking, persistently elevated LDL≥100, h/o CHF)

No

• High (or if >75 yrs, moderate or high [IIa]) intensity statin (I), or if not tolerated, moderate intensity statin

If LDL-C ≥ 70 mg/dl, ezetimibe is reasonable

Outline

• Recent history of and important concepts in clinical lipidology
• New ACC/AHA Blood Cholesterol guidelines: goals are back
• PCSK9 inhibition: when and how?
• SGLT2 inhibition: inducing glycosuria improves outcomes
• Marine omega-3 polyunsaturated fatty acids: fishy or not?
• Other “nutraceuticals”: is there a role?
Metabolic syndrome and diabetes mellitus

- Metabolic syndrome: co-occurrence of cardiovascular risk factors
- Share mechanisms of type 2 diabetes mellitus

• Graphic original.
• Hormone sensitive lipase (HSL) mobilizes stored fat, breaking down TGs, freeing FAs
• More energy in bloodstream
• HSL is inhibited by insulin
 • Lipoprotein lipase (LPL) cleaves TGs into free fatty acids (FFAs)
 • “Clears” TG-rich particles from the circulation
 • Less energy in bloodstream
 • LPL is activated by insulin

• Hepatic VLDL production also occurs when increased circulating energy stores are needed
• VLDL production is inhibited by insulin

*Graphic original.
• VLDL can transfer its TG content to LDL
• TG-rich LDL is preferentially converted to small, dense LDL which is particularly atherogenic

• After VLDL and chylomicrons (CM) donate their lipid contents to end-tissues, they become VLDL or CM remnants
• Remnants are particularly atherogenic
Normal state
- Circulating VLDLs and CMs are kept to a minimum
- Energy is “cleared appropriately” from the bloodstream for utilization or storage

Diabetic dyslipidemia
- Increased serum triglycerides
- Decreased HDL-C
- Predominance of small dense LDL particles and VLDL/CM remnants

- Graphic original.
SGLT2 inhibitors

- **Therapeutic glycosuria**

 - [Diagram showing glucose reabsorption in proximal convoluted tubule with SGLT2 inhibitors increasing glucose excretion]

Class currently includes canagliflozin, dapagliflozin, and empagliflozin

- **Mechanism**
 - Prevent reabsorption of glucose by the kidneys
 - Net decrease in blood sugar

- **Dosing & effect**
 - Oral agents with daily dosing
 - A1c lowering of 0.5-0.8%

- **Adverse effects**
 - Hypotension
 - Urinary tract infections
 - Ketoacidosis
 - AKI

SGLT2 inhibitors

- **Therapeutic glycosuria**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Approximate effect of SGLT2 inhibitor treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight</td>
<td>↓ 4 kg</td>
</tr>
<tr>
<td>Visceral adipose tissue mass</td>
<td>↓ 8%</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>↓ 4%</td>
</tr>
<tr>
<td>HDL-C</td>
<td>↑ 6%</td>
</tr>
<tr>
<td>LDL-C</td>
<td>↑ 2%</td>
</tr>
</tbody>
</table>

Summary of CV benefit/harm of diabetic drugs

- **SGLT2 inhibitors:** positive
 - Empagliflozin (EMPA-REG OUTCOME) [HR 0.86]
 - Canagliflozin (CANVAS) [HR 0.86]

- **GLP-1 receptor agonists:** mixed
 - Lixisenatide (ELIXA) ±
 - Exenatide (EXSCEL) ±
 - Liraglutide (LEADER) + [HR 0.97]
 - Semaglutide (SUSTAIN-6) + [HR 0.74]

- **DPP4 inhibitors:** neutral effect
 - Sitagliptin (TECOS)
 - Alogliptin (EXAMINE)
 - Saxagliptin (SAVOR-TIMI 53)

- **Insulins:** neutral effect

Agent (STUDY example) [HR for generally primary endpoint of MACE, p<0.05]

Cefalu WT et al. *Diab Care* 2018;41:14-31.

See Dr. Joshua Joseph’s MedNet21 webcast for more information
Outline

- Recent history of and important concepts in clinical lipidology
- New ACC/AHA Blood Cholesterol guidelines: goals are back
- PCSK9 inhibition: when and how?
- SGLT2 inhibition: inducing glycosuria improves outcomes
- Marine omega-3 polyunsaturated fatty acids: fishy or not?
- Other “nutraceuticals”: is there a role?

Recall: regulation of VLDL synthesis is under the control of insulin
- Also: ω-3-polyunsaturated fatty acids (ω-3-PUFAs) inhibit VLDL lipidation and TG production

- Graphic original.
Omega-3 Fatty Acids

• Mechanism of action – not well elucidated
 • Proposed: increased beta oxidation, inhibition of acyl-CoA, decreased hepatic production of VLDL, increased LPL activity

• Dosing & effect
 • For TG >500: dosed at 2g twice daily
 • Primary effect is to lower TG
 • DHA component can increase LDL

• Adverse effects
 • Prolongation of bleeding time
 • Fishy aftertaste or belching
 • Nausea

\[\text{ω-3-poly-unsaturated fatty acids}\]

• Do they reduce serum triglycerides?
 • Yes

• Do they change outcomes?

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Approximate effect of ω-3-PUFA treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-HDL-C</td>
<td>↓5-14%</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>↓19-44%</td>
</tr>
<tr>
<td>HDL-C</td>
<td>±</td>
</tr>
<tr>
<td>LDL-C</td>
<td>↓6%-↑25%</td>
</tr>
</tbody>
</table>

ω-3-poly-unsaturated fatty acids

Does treatment change outcomes?

<table>
<thead>
<tr>
<th>Trial</th>
<th>Endpoints / Mean Follow-up</th>
<th>Daily dose</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta-analysis of 10 trials Aung et al. JAMA Cardiol 2018 (n=77,917) prior CHD, CVA, or high ASCVD risk</td>
<td>Any CHD (fatal/nonfatal) or major vascular events 4.4 years</td>
<td>Generally 1 g EPA/DHA</td>
<td>No effect</td>
</tr>
<tr>
<td>GISSI-Prevenzione investigators. Lancet 1999; (n=11,324) with recent MI (2x2 design also with vt. E)</td>
<td>Death, non-fatal MI, CVA 3.5 years</td>
<td>1 g EPA/DHA vs. Placebo</td>
<td>Benefit Composite RRR 10% Death RRR 14%</td>
</tr>
<tr>
<td>JELIS Yokogama et al. Lancet 2007 (n=18,645) unselected hypercholesterolemic (Total-C > 252 mg/dl) Japanese patients</td>
<td>Any CHD event (CHD death, SCD, fatal/nonfatal MI, UA, PCI, CABG) 4.6 years</td>
<td>Statin + [1.8 g EPA-only or placebo]</td>
<td>Benefit Composite RRR 19% No difference in LDL</td>
</tr>
</tbody>
</table>

REDUCE-IT

- **Enrollment**: 8,179 patients with hypertriglyceridemia (135-499 mg/dl) and “controlled” LDL (41-100 mg/dl).
- **Patients** were (mean) 64 yrs, 71% male, BMI 30.8, most on statins
- **Endpoint**: [CV death, nonfatal MI, nonfatal CVA, coronary revascularization or UA]
- **Treatment**: icosapent ethyl (EPA only) 4 g/day (2 g bid with food) vs. placebo (mineral oil)
- **Follow-up**: 4.9 yrs.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Treatment (EPA)</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triglycerides</td>
<td>↓18.3% (-39 mg/dl)</td>
<td>↑12.2% (+4.5 mg/dl)</td>
</tr>
<tr>
<td>LDL-C</td>
<td>↓13.1% (+2.0 mg/dl)</td>
<td>↑10.2% (+7.0 mg/dl)</td>
</tr>
</tbody>
</table>

[HR 0.75 NNT 21 (RRR 20% for CV death)]

REDUCE-IT

What’s the catch?

- Any adverse effects?
 - No difference in bleeding, including hemorrhagic stroke
 - Hospitalization for atrial fibrillation or flutter was 3.1% in EPA group vs. 2.1% placebo (p=0.0004).
- Is it just the triglyceride lowering?
 - ACCORD-Lipid: fenofibrate lowers TG but no change in outcome
 - AIM-HIGH, HPS2-THRIVE: niacin lowers TG but no change in outcome
- Will REDUCE-IT change practice?

ω-3-poly-unsaturated fatty acids

- Antiarrhythmic or not?

<table>
<thead>
<tr>
<th>Trial</th>
<th>Dose</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>REDUCE-IT 2019</td>
<td>4 g/d EPA only</td>
<td>↑47% excess atrial fib/flutter</td>
</tr>
<tr>
<td>Cochrane Review 2018</td>
<td>Varies (0.5 to >5 g/d)</td>
<td>Marine: No difference arrhythmia Plant-based (ALA): ↓21% arrhythmias</td>
</tr>
<tr>
<td>79 RCTs, (n=112,059)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GISSI-HF (n=6,975) with HF</td>
<td>1 g/d mixed</td>
<td>No difference in atrial fibrillation ↓9% mortality; ↓8% HF admissions</td>
</tr>
</tbody>
</table>

- Animal studies suggest DHA may have antiarrhythmic properties in AF

ω-3-poly-unsaturated fatty acids

- **Current Rx products and labeling**

<table>
<thead>
<tr>
<th>Agent</th>
<th>Trade Name Composition</th>
<th>Dose</th>
<th>Labeled Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Icosapent ethyl</td>
<td>Vascopa®</td>
<td>2 g bid with food</td>
<td>• Significant hypertriglyceridemia (>500 mg/dL) as adjunct to diet and exercise</td>
</tr>
<tr>
<td>ω-3 acid ethyl esters</td>
<td>Lovaza® 65% EPA / 45% DHA</td>
<td>4 g qd or 2 g bid +/- food</td>
<td>• Significant hypertriglyceridemia (>500 mg/dL) as adjunct to diet and exercise</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• For use as adjunct to simvastatin for hyper-TG</td>
</tr>
<tr>
<td>ω-3 carboxylic acids</td>
<td>Epanova® Mostly EPA</td>
<td>2-4 g qd +/- food</td>
<td>• Significant hypertriglyceridemia (>500 mg/dL) as adjunct to diet and exercise</td>
</tr>
</tbody>
</table>

ω-3-poly-unsaturated fatty acids

- **Should I just buy OTC fish oil at the drug store?**

<table>
<thead>
<tr>
<th>How to get 2 g EPA</th>
<th>Vascepa</th>
<th>Lovaza</th>
<th>Viva Naturals</th>
<th>Kirkland</th>
<th>Nature Made</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>700 mg EPA</td>
<td>240 mg DHA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250 “omega-3”</td>
<td>360 mg EPA</td>
<td>300 mg DHA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?150 mg EPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?100 mg DHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“Nutraceuticals”

“Doc, is it OK if I take...?”

- “Certain nutraceuticals...alone or in combination with each other, as well as ezetimibe, might be considered as an alternative or add-on therapy to statins, although there is still insufficient evidence available with respect to long-term safety and effectiveness”

“Nutraceuticals” and lifestyle changes

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Mechanism of action</th>
<th>Dose</th>
<th>Expected Δ LDL-C (relative)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased physical activity</td>
<td>Multifactorial</td>
<td>200-300 min/week</td>
<td>↓~5%</td>
</tr>
<tr>
<td>Loss of body weight</td>
<td>Multifactorial</td>
<td>↓5% body weight</td>
<td>↓3-5%</td>
</tr>
<tr>
<td>Diet low in saturated and trans fats</td>
<td>↓LDL-C production</td>
<td></td>
<td>↓5-10%</td>
</tr>
<tr>
<td>Viscous fiber</td>
<td>Bile acid sequestration, ↑satiety</td>
<td>5-10 g/day</td>
<td>↓5-20%</td>
</tr>
<tr>
<td>Plant sterols/stanols</td>
<td>Competitive inhibition of cholesterol absorption</td>
<td>2 g/day</td>
<td>↓~10%</td>
</tr>
</tbody>
</table>

“Nutraceuticals” and lifestyle changes

Highlights

<table>
<thead>
<tr>
<th>Agent</th>
<th>Mechanism of action</th>
<th>Dose</th>
<th>Δ LDL-C (absolute)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berberine</td>
<td>Has PCSK9 inhibitory properties, increases LDLR expression and decreases intestinal chol. absorption</td>
<td>300 mg/day</td>
<td>25 mg/dl</td>
</tr>
<tr>
<td>Artichoke</td>
<td>Luteolin interacts with HMG-CoA reductase, SREBPs, ACAT</td>
<td>500-2,700 mg/d</td>
<td>15 mg/dl</td>
</tr>
<tr>
<td>Garlic</td>
<td>Inhibition of HMG-CoA reductase</td>
<td>5-6 g/d</td>
<td>9 mg/dl</td>
</tr>
<tr>
<td>Green tea</td>
<td>Inhibition of inducible NO synthase, inhibition of HMG-CoA reductase</td>
<td>170-1,200 mg/d</td>
<td>7 mg/dl</td>
</tr>
</tbody>
</table>

A Case Study

34 year-old man with family history of heart disease is interested in lowering his cholesterol “naturally” (despite low 10-year est. ASCVD risk).
Take Home Points

- Recent history of and important concepts in clinical lipidology
 - Please consider non-HDL-C as well as LDL-C lowering, especially in hypertriglyceridemics
- New ACC/AHA Blood Cholesterol guidelines
 - Goal atherogenic cholesterol levels are both motivating and evidence based
- PCSK9 inhibition: when and how?
 - FH or ASCVD and LDL-C > 70 or non-HDL-C > 100 mg/dl

Take Home Points

- SGLT2 inhibition: inducing glycosuria improves outcomes
 - Discuss ASCVD benefits of DM drugs with PCP, endocrine
- Marine omega-3 polyunsaturated fatty acids and other “nutraceuticals”
 - May have a role, consider in statin intolerance/refusal