Lung Diseases They Didn’t Teach You About In Medical School

Derrick Herman, MD
Assistant Professor
Department of Internal Medicine
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
The Ohio State University Wexner Medical Center

Case #1

- 76 year old man
- Dyspnea and cough for 5 years
- Past medical history: chronic pancreatitis
- Social history: former smoker
- Exam: bibasilar dry crackles

Case #1 (continued)

- Sed rate > 130
- C-reactive protein elevated at 13.9
- Atypical ANCA positive at 1:80
- SS-A antibody positive
- Eosinophil count elevated at 600
- Serum IgG4 749.0 (121 the upper limit of normal)
IgG4 Disease: Overview

- Disease did not appear in medical publications until 2003
- Multi-organ immune related condition
- Mimics many malignant, infectious, and inflammatory disorders

Diagnosis: IgG4 Disease

- Multi-organ immune related condition
- Mimics many malignant, infectious, and inflammatory disorders

IgG4 Stain
IgG4 Disease: Organs Affected

- Autoimmune pancreatitis
- Salivary/parotid gland enlargement
- Thyroiditis
- Sclerosing cholangitis
- Lymphadenopathy
- Retroperitoneal fibrosis
- Aortitis
- Tubulointerstitial nephritis
- Skin rash
- Interstitial lung disease

IgG4 Disease: Pulmonary Manifestations

- Parenchymal
 - Nodules or masses
 - Ground glass infiltrates
 - Interstitial infiltrates
- Mediastinal adenopathy
- Bronchostenosis
- Pleural effusions

IgG4 Disease Presenting as Interstitial Lung Disease

![Image of lung with consolidation](image)

IgG4 Disease Presenting with Consolidations

![Image of lung with consolidation](image)
IgG4 Disease Presenting as Cryptogenic Organizing Pneumonia

IgG4 Disease: Diagnosis
- Elevated serum IgG4
- Tissue biopsy
 - Dense lymphoplasmacytic infiltrates & storiform fibrosis
 - Increased IgG4-staining plasma cells
 - Increased eosinophils

IgG4 Disease: Treatment
- Corticosteroids
- Mycophenolate
- Azathioprine
- Rituximab

Key Points About IgG4 Disease
- Recently recognized multi-organ immune related condition
- Mimics malignant, infectious, and inflammatory disorders
- Diagnosed by an elevated serum IgG4 and biopsy
- Treatment is immunosuppression
Lung Diseases They Didn’t Teach You About In Medical School

James Allen, MD
Medical Director, The Ohio State University Wexner Medical Center East Hospital
Professor of Internal Medicine
Division of Pulmonary and Critical Care Medicine
The Ohio State University Wexner Medical Center

Case #2

• 59-year old woman
• Unremarkable past medical history
• 3-day history of cough and progressive dyspnea
• No improvement with outpatient antibiotic
• Exam: mild bibasilar crackles
• Lab: WBC = 16.3 with 1,200 eosinophils

January 21, 2019 – emergency department

January 22, 2019 – intensive care unit
<table>
<thead>
<tr>
<th>Date</th>
<th>Event/Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 23, 2019</td>
<td>transferred to Ohio State</td>
</tr>
<tr>
<td></td>
<td>Bronchoalveolar lavage</td>
</tr>
<tr>
<td></td>
<td>• 10% Alveolar macrophages</td>
</tr>
<tr>
<td></td>
<td>• 2% Neutrophils</td>
</tr>
<tr>
<td></td>
<td>• 3% Lymphocytes</td>
</tr>
<tr>
<td></td>
<td>• 85% Eosinophils</td>
</tr>
<tr>
<td>January 24, 2019</td>
<td></td>
</tr>
<tr>
<td>March 1, 2019</td>
<td></td>
</tr>
</tbody>
</table>
Acute Eosinophilic pneumonia

Presentation:
- Average symptoms 4 days
- Average age 29 yrs
- Symptoms:
 - Cough 100%
 - Dyspnea 95%
 - Chest pain 73%
 - Myalgias 50%
 - 40% “beginner” smokers

Exam:
- Average temperature 101°F
- Average respiratory rate 32/min
- Crackles in 80%

Acute Eosinophilic pneumonia

Chest X-ray:
1. Kerley B lines
2. Interstitial infiltrates
3. Alveolar infiltrates
4. Pleural effusions

Lab:
- Average WBC 17,000
- Blood eosinophils may not be elevated
- Average PO₂ = 57 mm
Acute Eosinophilic Pneumonia

Typical BAL:
- 37% eosinophils
- 20% lymphocytes
- 15% neutrophils
- 28% macrophages

Lung biopsy:
- Intra-alveolar eosinophils

Treatment:
- **Initial treatment:**
 - With respiratory failure: IV Methylprednisolone 60-125 mg every 6 hours
 - Without respiratory failure: Prednisone 40-60 mg daily
- **Subsequent treatment:**
 - Prednisone 40-60 mg daily - taper over 2-4 weeks
- Relapses are rare
Acute Eosinophilic Pneumonia: Causes
- Idiopathic
- Cigarette smoking
- Prescription drugs
- Street drugs
- Organic dust inhalation
- Parasites

Key points about acute eosinophilic pneumonia
- It mimics severe pneumonia or ARDS
- Bronchoscopy with BAL is required for diagnosis
- Responds immediately to steroids
- Often associated with beginning cigarette smoking

Lung Diseases They Didn’t Teach You About In Medical School

Derrick Herman, MD
Assistant Professor
Department of Internal Medicine
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
The Ohio State University Wexner Medical Center

Case #3
- 50 year old man
- Recent spontaneous pneumothorax
- Past medical history: spontaneous pneumothorax 15 years prior
- Family history:
 - Father had spontaneous pneumothorax
 - Brother with kidney cancer
- Exam: normal
Lung Biopsy at the Time of Surgical Pleurodesis

Diagnosis: Birt-Hogg-Dube Syndrome

Birt-Hogg-Dube Syndrome:
Overview

- Autosomal dominant inheritance
- Folliculin (FLCN) gene mutation
- Clinical manifestations
 - Skin fibrofolliculomas
 - Kidney cancer – chromophobe tumors
 - Bilateral pulmonary cysts
Birt-Hogg Dube Syndrome: Pulmonary Manifestations

- Cystic lung lesions in the 4th to 5th decade of life
- 2 common pulmonary presentations:
 - Incidental pulmonary cystic lesions on chest CT
 - Pneumothorax

Birt-Hogg Dube Syndrome: Radiology

- Basilar predominant pulmonary cystic lesions

Birt-Hogg Dube Syndrome: Diagnosis

- Pulmonary cysts plus personal or family history of:
 - Pulmonary cysts or pneumothorax
 - Fibrofolliculomas
 - Renal tumors
 - Genetic testing for the FLCN gene

Birt-Hogg-Dube Syndrome: Management

- Renal cancer the most threatening manifestation
 - Cancer screening every 1-2 years:
 - Ultrasound
 - CT
 - MRI
- Pulmonary disease
 - Cysts do not usually impair lung function
 - Prevention of pneumothorax recurrence
Key Points About Birt-Hogg-Dube Syndrome

- Syndrome of:
 - Skin fibrofolliculomas
 - Kidney cancer
 - Pulmonary cysts with or without pneumothorax
 - Folliculin gene mutation
 - Autosomal dominant inheritance

Lung Diseases They Didn’t Teach You About In Medical School

James Allen, MD
Medical Director, The Ohio State University Wexner Medical Center East Hospital
Professor of Internal Medicine
Division of Pulmonary and Critical Care Medicine
The Ohio State University Wexner Medical Center

Case #4

- 57 year-old man referred for pulmonary pre-op evaluation
- History of cirrhosis due to NASH
 - Undergoing liver transplant evaluation
- Progressive dyspnea for 6 months
- Hair turned gray at age 16
- Father died of “asbestosis” and cirrhosis
- Exam: bibasilar dry crackles
Idiopathic pulmonary fibrosis (IPF)

- 85% are sporadic
- 15% are familial/inherited
 - Family members may have been diagnosed with “asbestosis”, “black lung”, or “lung scarring”
 - Many genes are involved
 - MUC5B gene
 - Telomerase genes
- Sporadic and familial idiopathic pulmonary fibrosis are treated the same

Telomere Length Testing

<table>
<thead>
<tr>
<th>Telomere Length (kb)</th>
<th>Age (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.60</td>
<td>88</td>
</tr>
<tr>
<td>5.09</td>
<td>89</td>
</tr>
<tr>
<td>4.85</td>
<td>88</td>
</tr>
<tr>
<td>4.03</td>
<td>90</td>
</tr>
<tr>
<td>3.21</td>
<td>89</td>
</tr>
<tr>
<td>3.11</td>
<td>94</td>
</tr>
<tr>
<td>2.87</td>
<td>88</td>
</tr>
<tr>
<td>2.65</td>
<td>92</td>
</tr>
<tr>
<td>2.43</td>
<td>93</td>
</tr>
<tr>
<td>2.09</td>
<td>94</td>
</tr>
</tbody>
</table>

Telomeres

<table>
<thead>
<tr>
<th>Telomere Length (kb)</th>
<th>Age (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.40</td>
<td>92</td>
</tr>
<tr>
<td>5.20</td>
<td>92</td>
</tr>
<tr>
<td>5.00</td>
<td>93</td>
</tr>
<tr>
<td>4.80</td>
<td>92</td>
</tr>
<tr>
<td>4.60</td>
<td>91</td>
</tr>
<tr>
<td>4.40</td>
<td>90</td>
</tr>
<tr>
<td>4.20</td>
<td>89</td>
</tr>
<tr>
<td>4.00</td>
<td>88</td>
</tr>
<tr>
<td>3.80</td>
<td>87</td>
</tr>
<tr>
<td>3.60</td>
<td>86</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Telomere Length (kb)</th>
<th>Age (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.50</td>
<td>90</td>
</tr>
<tr>
<td>5.30</td>
<td>90</td>
</tr>
<tr>
<td>5.10</td>
<td>91</td>
</tr>
<tr>
<td>4.90</td>
<td>90</td>
</tr>
<tr>
<td>4.70</td>
<td>89</td>
</tr>
<tr>
<td>4.50</td>
<td>88</td>
</tr>
<tr>
<td>4.30</td>
<td>87</td>
</tr>
<tr>
<td>4.10</td>
<td>86</td>
</tr>
<tr>
<td>3.90</td>
<td>85</td>
</tr>
<tr>
<td>3.70</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Telomere Length (kb)</th>
<th>Age (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.60</td>
<td>92</td>
</tr>
<tr>
<td>5.40</td>
<td>92</td>
</tr>
<tr>
<td>5.20</td>
<td>92</td>
</tr>
<tr>
<td>5.00</td>
<td>92</td>
</tr>
<tr>
<td>4.80</td>
<td>91</td>
</tr>
<tr>
<td>4.60</td>
<td>90</td>
</tr>
<tr>
<td>4.40</td>
<td>89</td>
</tr>
<tr>
<td>4.20</td>
<td>88</td>
</tr>
<tr>
<td>4.00</td>
<td>87</td>
</tr>
<tr>
<td>3.80</td>
<td>86</td>
</tr>
<tr>
<td>3.60</td>
<td>85</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Telomere Length (kb)</th>
<th>Age (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.70</td>
<td>92</td>
</tr>
<tr>
<td>5.50</td>
<td>92</td>
</tr>
<tr>
<td>5.30</td>
<td>92</td>
</tr>
<tr>
<td>5.10</td>
<td>92</td>
</tr>
<tr>
<td>4.90</td>
<td>91</td>
</tr>
<tr>
<td>4.70</td>
<td>90</td>
</tr>
<tr>
<td>4.50</td>
<td>89</td>
</tr>
<tr>
<td>4.30</td>
<td>88</td>
</tr>
<tr>
<td>4.10</td>
<td>87</td>
</tr>
<tr>
<td>3.90</td>
<td>86</td>
</tr>
<tr>
<td>3.70</td>
<td>85</td>
</tr>
</tbody>
</table>
50 - 100 base pairs of telomere DNA is lost at the end of the lagging strand with every replication.

Telomeres
Repeating sequences of TTAGGG

11 Kilobases At Birth 4 Kilobases At Age 80

Telomeres are the body’s chromosomal clocks.

Telomerase replenish telomeres at the end of DNA

Normal telomerase complex

Abnormal telomerase complex due to abnormal TERT gene
Short telomere syndromes

- Familial idiopathic pulmonary fibrosis
- Premature graying of the hair (before age 30)
- Cryptogenic cirrhosis
- Aplastic anemia
- Myelodysplasia

Short Telomere Syndrome Key Points

- Presentations:
 - Idiopathic pulmonary fibrosis
 - Cirrhosis
 - Myelodysplasia
- A good family history is essential
- Ask the patient when their hair turned gray
- Telomere length testing is supportive

Lung Diseases They Didn’t Teach You About In Medical School

Derrick Herman, MD
Assistant Professor
Department of Internal Medicine
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
The Ohio State University Wexner Medical Center

Case #5

- Previously healthy 29 year old woman
- 2 months of progressive dyspnea
- No improvement despite multiple antibiotics for pneumonia
- Social history: never smoker
- Review of systems notable for Raynaud's phenomenon
Case #5 (continued)

- Exam:
 - Bilateral diffuse crackles
 - Mild mechanic’s hands
- Labs:
 - Elevated aldolase 15.1 (upper limit 8.1)
 - SS-A & CCP antibody positive
 - Anti-Jo1 antibody positive

Chest CT

Chest CT 6 Weeks Later
Diagnosis: Organizing Pneumonia due to an Idiopathic Inflammatory Myopathy

Idiopathic Inflammatory Myopathy: Overview
- Polymyositis, dermatomyositis, and inclusion body myositis
- Muscular signs and symptoms
- Extramuscular signs and symptoms
 - Constitutional
 - Dermatological signs
 - Raynaud’s
 - Arthralgias
 - Pulmonary

Idiopathic Inflammatory Myopathy: Pulmonary Manifestations
- Prevalence may approach 65%
- Most significant extramuscular contributor to morbidity
- Interstitial lung disease is the hallmark
 - May precede muscular signs in up to 20% of cases

Rapidly Progressive Interstitial Lung Disease
- Acute interstitial pneumonia progressing over several weeks or months
- Strongly suggestive of an idiopathic inflammatory myositis
- Associated with anti-MDA5 (melanoma differentiation associated protein 5) antibody
Idiopathic Inflammatory Myopathy: Radiology & Pathology

- Radiology
 - Common: linear opacities, ground-glass opacities, reticulation
 - Organizing pneumonia and non-specific interstitial pneumonia patterns (NSIP)
 - Less frequent: honeycombing
 - Usual interstitial pneumonia
- Pathology
 - Organizing pneumonia
 - NSIP

Idiopathic Inflammatory Myopathy: Diagnosis

- Clinical history & exam
- Serological testing
 - Creatine kinase, aldolase, myositis-specific antibodies (i.e. anti-Jo1, anti-MDA5, etc.)
- Exclusion of infection
- Compatible chest CT
- +/- lung biopsy

Idiopathic Inflammatory Myopathy: Management

- Corticosteroids
- Mycophenolate
- Azathioprine

Key Points About Idiopathic Inflammatory Myopathy

- Muscular and extramuscular signs and symptoms
- Pulmonary disease the primary extramuscular contributor to morbidity
- Diagnosed through clinical history, serology, radiology, +/- pathology
 - Organizing pneumonia the most common radiology and pathology
 - Rapidly progressive pulmonary form associated with anti-MDA5 antibody
- Treatment is immunosuppression
Lung Diseases They Didn’t Teach You About In Medical School

<table>
<thead>
<tr>
<th>James Allen, MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical Director, The Ohio State University Wexner Medical Center East Hospital</td>
</tr>
<tr>
<td>Professor of Internal Medicine Division of Pulmonary and Critical Care Medicine</td>
</tr>
<tr>
<td>The Ohio State University Wexner Medical Center</td>
</tr>
</tbody>
</table>

Case #6
- 42 year-old woman with 14 year history of recurrent pneumonia
- Normal sweat chloride, IgG, IgE, alpha-1-antitrypsin
- 2004 BAL = negative AFB culture
- 2006 BAL = Mycobacterium avium complex & Mycobacterium abscessus
- 2008: completed 18 months of antibiotics
- 2015: recurrent sputum production and pneumonias

<table>
<thead>
<tr>
<th>2003</th>
<th>2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>![2003 Image]</td>
<td>![2007 Image]</td>
</tr>
</tbody>
</table>
2015

Repeat BAL: Scedosporium

2018

Typical clinical presentations

- Ophthalmologic
- Brain abscess
- Skin and soft tissues
- Pulmonary infections

- Patients are often immunosuppressed
- Chronic pneumonia in immunocompetent patients can occur
- Diagnosis is by fungal culture
- Treatment:
 - Voriconazole
 - Surgical debridement
Sometimes surgery is the only effective cure
Lung Diseases They Didn’t Teach You About In Medical School

Derrick Herman, MD
Assistant Professor
Department of Internal Medicine
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
The Ohio State University Wexner Medical Center

Key Points About Scedosporium

• Patients often are immunosuppressed
• But... chronic pulmonary infection can occur in normal patients and those with underlying bronchiectasis
• Anti-fungal antibiotics are often ineffective
• Surgery is often necessary

Case #7

• Previously healthy 39 year old woman
• Progressive shortness for several months
• Social history: never smoker
• Exam: normal
Case #7

- Labs:
 - ANCA negative
 - Alpha-1-antitrypsin negative
 - ANA negative
 - Serum vascular endothelial growth factor (VEGF): 802 pg/ml (upper limit of normal 310)
Diagnosis:
Lymphangioleiomyomatosis (LAM)

LAM: Overview

- Cystic lung disease caused by infiltration of the lung with smooth muscle
- 2 forms
 - Patients with tuberous sclerosis (TSC)
 - Sporadic form
- Caused by genetic mutations in either of 2 TSC genes
- Associated with pulmonary manifestations, angiomyolipomas, and lymphangioleiomyomas
LAM: Epidemiology
- Average age at diagnosis: 35 years
- Almost entirely restricted to women

LAM: Pulmonary Manifestations
- Pulmonary cysts
- Pneumothorax
- Chylous pleural effusion
- Obstructive lung disease

LAM: Pathology
- Smooth muscle infiltration of parenchyma, airways, lymphatics, blood vessels
- Thin-walled cystic changes

LAM: Diagnosis
- Index of suspicion when:
 - Young female with a pneumothorax
 - Incidental discovery of pulmonary cysts, angiomyolipoma, or lymphangiomyoma
 - Unexplained chylous pleural effusion or ascites
- Compatible chest CT plus any 1 of the following:
 - Angiomyolipoma, lymphangiomyoma, chylous pleural effusion
 - VEGF greater than 800 pg/ml
 - Lung biopsy
LAM: Management

• Sirolimus for patients with a FEV1 less than 70%

Key Points About LAM

• Cystic lung disease in females
 • Consider in any young female with pulmonary cysts +/- pneumothorax
 • Diagnosed via radiology, serum VEGF level, +/- biopsy
 • Sirolimus is the treatment for patients with impaired pulmonary function

Lung Diseases They Didn’t Teach You About In Medical School

Case #8

• 44 year-old woman with recurrent pneumonia for 5 months
• Intermittent fevers to 103°F – resolve with prednisone and antibiotics
• Episodic urticarial skin rash
• Testing:
 • Spirometry = moderate obstruction
 • IgE elevated at 6,204
 • Eosinophil count elevated at 780

Left forearm
Strongyloides Symptoms

<table>
<thead>
<tr>
<th>Systemic:</th>
<th>In the lung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Skin Rash</td>
<td>• Wheezing</td>
</tr>
<tr>
<td>• Abdominal Pain</td>
<td>• Recurrent pneumonias (especially gram negative)</td>
</tr>
<tr>
<td>• Diarrhea</td>
<td>• Migratory pulmonary infiltrates</td>
</tr>
<tr>
<td>• Increased blood eosinophil count</td>
<td>• Cough</td>
</tr>
<tr>
<td></td>
<td>• Hemoptysis</td>
</tr>
</tbody>
</table>

Systemic:
- Skin Rash
- Abdominal Pain
- Diarrhea
- Increased blood eosinophil count

In the lung:
- Wheezing
- Recurrent pneumonias (especially gram negative)
- Migratory pulmonary infiltrates
- Cough
- Hemoptysis

Bronchoalveolar Lavage:
Low Power Photomicrograph

Agar Culture Plate:
Larvae Leaving Bacterial Trails
77 year-old woman with Takayasu’s arteritis

- Previously treated with methotrexate
- Now with cough and dyspnea for 3 years
- No improvement with inhalers or prednisone
- Testing:
 - PFTs = severe obstruction
 - Eosinophil count 1,200

After treatment with ivermectin

79-year old man with recurrent pneumonias and peripheral blood eosinophilia

After treatment with ivermectin
Strongyloides is sneaky

- 87 year old mother of OSU physician
- Recurrent "colitis", eosinophilia, pulmonary infiltrates and cough for 20 years
- Positive anti-strongyloides antibody
- Symptoms resolved with ivermectin

You’ll miss it if you only order the regular stool O&P exam

- 35-year old man
- Multiple ICU admissions
- Recurrent fevers & pseudomonas pneumonia
- Persistent fevers and blood eosinophilia (up to 2,700)
- Stool O&P negative (antigenic)
- Strongyloides antibody positive

Key Points About Strongyloides:

- Worms are everywhere
- Non-resolving pneumonia + peripheral eosinophilia = order a Strongyloides antibody test

Lung Diseases They Didn’t Teach You About In Medical School

Derrick Herman, MD
Assistant Professor
Department of Internal Medicine
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine
The Ohio State University Wexner Medical Center
Case #9

- 63 year old man
- Dyspnea and nonproductive cough for 8 months
- Past medical history:
 - Psoriatic arthritis
 - Lupus, recently diagnosed
- Medications:
 - Methotrexate for 3 years; stopped 5 years prior
 - Prednisone, started 2 months prior

Case #9 (continued)

- Social history: never smoker
- Exam: biapical dry crackles
- Labs:
 - ANA positive
 - All other serological studies negative
Pathology Report

- Pleuritis
- Pleural blebs associated with subpleural fibrobulous disease/scarring in upper and middle lobes.
- The etiology of these changes is not apparent
- UIP/IPF was considered in the differential; however, the predominance of changes in upper lobe and radiologically apparent sparing of lower lobe argue against that consideration.

PPFE: Overview

- Upper-lobe-dominant slowly progressive pulmonary fibrosis
- 1st description in 1992
- The name, PPFE, was coined in 2004 and is descriptive
- Unknown etiology
 - Idiopathic form
 - Form associated with lung and bone marrow transplants, chemotherapy, infections, autoimmune diseases

Diagnosis: Pleuropulmonary Fibroeslastosis (PPFE)
<table>
<thead>
<tr>
<th>PPFE: Epidemiology</th>
<th>PPFE: Pulmonary Manifestations</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Median age at diagnosis: 53 years</td>
<td>• Restrictive ventilatory impairment</td>
</tr>
<tr>
<td>• No sex predilection</td>
<td>• Interstitial lung disease</td>
</tr>
<tr>
<td>• Smoking not a risk factor</td>
<td>• Pneumothorax</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PPFE: Radiology & Pathology</th>
<th>PPFE: Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Radiology</td>
<td>• No agreed upon consensus statement</td>
</tr>
<tr>
<td>• Early bilateral and irregular apical pleural thickening</td>
<td>• Clinical signs and symptoms, radiology, +/- pathological exam</td>
</tr>
<tr>
<td>• Later reticular and fibrotic parenchymal changes</td>
<td></td>
</tr>
<tr>
<td>• Biapical blebs</td>
<td></td>
</tr>
<tr>
<td>• Pathology</td>
<td></td>
</tr>
<tr>
<td>• Fibro:</td>
<td></td>
</tr>
<tr>
<td>• Fibrous thickening of the visceral pleura</td>
<td></td>
</tr>
<tr>
<td>• Dense intra-alveolar fibrosis</td>
<td></td>
</tr>
<tr>
<td>• Septal elastosis</td>
<td></td>
</tr>
<tr>
<td>• Abrupt transition from normal to abnormal tissue</td>
<td></td>
</tr>
</tbody>
</table>
PPFE: Management

- Prognosis is highly variable
- No treatment has yet been demonstrated to alter disease progression
- Supportive care
- Lung transplant

Key Points About Pleuroparenchymal Fibroelastosis

- Relatively recently (1992) recognized entity
- The diagnostic term is descriptive for radiological and pathological features
- No consensus diagnostic criteria
- Clinical course variable
- No disease modifying treatment

Lung Diseases They Didn’t Teach You About In Medical School

James Allen, MD
Medical Director, The Ohio State University Wexner Medical Center East Hospital
Professor of Internal Medicine
Division of Pulmonary and Critical Care Medicine
The Ohio State University Wexner Medical Center

Case #10

- 48 year-old man with cough onset January 2016
- Referred for interstitial lung disease evaluation July 2017
- Past medical history = HIV (well-controlled)
- Family history: Mother & maternal aunt had idiopathic pulmonary fibrosis
- Exam: bibasilar dry crackles
- BAL: 89% neutrophils (normal < 2%), no cancer
Adenocarcinoma ("bronchoalveolar carcinoma")

Adenocarcinomas can be missed on biopsy

- Bronchoscopy #1
 - BAL – 52% macrophages, 27% neutrophils, 15% lymphocytes, 6% eosinophils; negative AFB, fungal cultures; cytology negative
 - Brushings – negative cytology
 - Transbronchial biopsy – calcified granuloma with histoplasmosis organisms seen; no cancer
- Bronchoscopy #2
 - Negative cytology
- Bronchoscopy #3
- Surgical lung biopsy
 - Organizing pneumonia (pathologist #1)
 - Hypersensitivity (pathologist #2)
 - Adenomatous hyperplasia (pathologist #3)
 - Organizing pneumonia versus hypersensitivity pneumonitis but no cancer (pathologist #4)
 - Bronchoscopy #3
 - Transbronchial biopsy = no cancer
Adenocarcinoma

- Current classification of adenocarcinoma of the lung:
 - Lepidic
 - Acinar
 - Papillary
 - Solid
 - Invasive mucinous
 - Colloid
 - Minimally invasive
 - Adenocarcinoma in situ

Key Points About Adenocarcinoma

- The term “bronchoalveolar carcinoma” is no longer used
- Well-differentiated adenocarcinomas can be difficult to diagnose
- Cytology and even surgical lung biopsies can be false-negative
- Adenocarcinoma can mimic many interstitial lung diseases
- Driver mutations determine treatment choices

