Common Office Procedures

Bethany Panchal, MD
Associate Professor - Clinical
Associate Program Director
Department of Family Medicine
The Ohio State University Wexner Medical Center

Cryosurgery
Shave biopsy
Punch biopsy
Skin anatomy review

- Knowledge of skin anatomy critical to an effective procedure and understanding potential complications
- Epidermal thickness 0.05-1.5mm
- Dermal thickness 0.6-3mm

Cryosurgery

- Use of extremely low temperatures to produce local tissue destruction
- Liquid nitrogen most commonly used professionally
 - Produces much colder temps (-168°C) than OTC products (i.e. dimethyl ether -24°C)
Cryosurgery - vehicles

- Spray-tip canister
 - Direct contact not needed
- Cotton-tip applicator
 - Very precise
 - Small lesions near eyes
 - children
- Metallic instrument
 - Frozen in LN
 - Clamp to skin tag

Cryosurgery - mechanism

- Heat is transferred away from cells to the LN - causing tissue necrosis

- The freezing causes cell destruction
 - ice crystal formation
 - cell membrane disruption
 - vascular stasis

- Rapid cooling and slow thaw maximizes tissue destruction
Cryosurgery - indications

- Benign lesions - skin tags, seborrheic keratosis, warts, molluscum, keloids, solar lentigines
- Pre-malignant lesions - actinic keratosis
 - Take care to biopsy any suspicious lesion for SCC
- Malignant lesions – superficial basal cell carcinoma, squamous cell carcinoma in situ
 - Used for thin, well defined lesions when other treatments are contraindicated (rare)
 - Require longer freezing times to reach lower tissue temperature

Cryosurgery - technique

- Freeze fast, thaw slowly
 - Better intracellular ice formation is more damaging
- Repeat freeze-thaw cycles for maximal destruction
- General parameters for benign and pre-malignant lesions:
 - 1 to 2 cycles of 3-10 second freeze with 2mm lateral spread

<table>
<thead>
<tr>
<th>Cell Type</th>
<th>Temperature range for destruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanocytes</td>
<td>-4 to -7°C</td>
</tr>
<tr>
<td>Benign lesions (Keratinocytes)</td>
<td>-25 to -50°C</td>
</tr>
<tr>
<td>Malignant</td>
<td>At least -50°C</td>
</tr>
</tbody>
</table>
Cryosurgery video

Cryosurgery-follow up

• Expected side effects: Pain, edema, erythema, blister and crust formation

• Complications
 • Common: hypopigmentation (mild degree of freezing (-5°C) to irreversibly damage melanocytes)
 • Uncommon: scarring, nail dystrophy, alopecia
Cryosurgery

- Relative contraindications
 - Cold sensitivity (i.e. cold urticaria)
 - Ill-defined lesion, location (eyelid), tanned or dark skin
- Post-procedure care
 - Daily cleansing with soap and water
 - Petrolatum ointment
 - Sun protection
 - Healing expected within 1-3 weeks

Common Office Procedures

Kristen Rundell, MD, FAAFP
Associate Professor Clinical Vice Chair For Education
Department of Family Medicine
The Ohio State University Wexner Medical Center
Skin Biopsies

- Need to get informed consent
- Risks: Pain, bleeding, infection, scarring and the potential need for additional procedures
- Benefits: Diagnosis and potentially curative treatment

Shave biopsy

- Most common skin biopsy technique
- Diagnostic role - obtain specimen for histologic exam
- Therapeutic role - remove an inflamed or symptomatic skin lesion
 - If the intent is complete lesion removal then the term “shave excision” or “shave removal” is used
Shave biopsy

- Best for epidermal and superficial dermal processes
 - Biopsy of suspected basal cell carcinoma or squamous cell carcinoma
 - Removal of skin tags and other benign exophytic neoplasms
- Local anesthesia used to produce a wheal under the lesion
- Use a 15 blade or single-edged razor blade held semi-curved
- Move through skin in a sawing motion horizontally
 - Entering epidermis to depth of superficial dermis
- Goal is a shallow, saucer-shaped defect with a single intact specimen
- Submit specimen in 10% formalin or Michel’s solution for immunofluorescence
Shave biopsy video

Punch biopsy

- Deeper sampling than shave biopsy
- Diagnostic role - obtain specimen for histologic exam
 - Useful for rashes, dermal or subcutaneous nodules, melanocytic neoplasms
- Therapeutic role - removal of small dermal neoplasms
 - “benign excision” or “punch removal” are best terms
 - Useful for cysts, inflamed dermal nevi

Image from National Cancer Institute
Punch biopsy

- Common punch tools vary from 2mm – 10mm
 - 4mm most common
- Oval-shaped defect is optimal
 - Created by spreading skin perpendicular to relaxed skin tension lines during biopsy
- Push and rotate punch tool to subcutaneous tissue (hub of the punch tool)
- Forceps and scissors used to extricate the specimen

Punch biopsy closure

- Sutures generally provide best closure
 - Nylon or polypropylene monofilament - require removal
 - 3-5 days for face (use 6-0)
 - 7-10 days for scalp and neck
 - 10-14 days for remainder of body
 - Fast-absorbing gut dissolves
- Secondary intention (if less than 4 mm)
- Wound closure strips in non-tension areas
- Absorbable sponge product is a good choice for areas that are difficult to suture.
Skin biopsy side effects and wound care

- Side effects
 - Pain, bleeding, crusting
 - Secondary infection
 - Delayed healing, especially hands, feet, lower legs in elderly person
 - Scar formation
- Wound care
 - Daily cleansing with soap and water
 - White petrolatum ointment + bandage changed daily
 - Sun protection to prevent scarring
Skin biopsy – bleeding risk

- Caution if severe thrombocytopenia, bleeding disorder or anticoagulant use
 - Biopsy may still be performed but hemostasis may be delayed
 - Lower legs, hands, feet, digits, lips, and scalp prone to bleeding
 - Use anesthetic with epinephrine – except tips or ears, fingers, toes or genital area
 - May need to use aluminum chloride, pressure dressing or absorbable sponge

Skin biopsy relative contraindications

- History of keloid scarring
- Infection at biopsy site
- Anesthetic allergy
 - More common with esters than amides
 - Often due to a preservative rather than the anesthetic itself
- Options
 - Anesthetic of alternate class in a preservative-free formulation
 - 1% diphenhydramine solution
 - Normal saline
Conclusions

• Knowledge of skin anatomy is critical to successful performance of dermatologic procedures and understanding side effects

• When performing cryosurgery tailor length of freeze and number of cycles to “thickness” of target lesion
 - Freeze fast and thaw slowly for best results

• Shave biopsy is best for epidermal and superficial dermal pathology

• Punch biopsy is best when assessment of dermal (or deeper) pathology is necessary

Office Procedures: Joint Injection Techniques

Larry Nolan II, DO, CAQSM
Clinical Assistant Professor,
Department of Family Medicine & Sports Medicine
The Ohio State University Wexner Medical Center
Joint Injection Techniques

Objectives

- Injection, Aspiration
 - Indications for each
 - Relative and absolute contraindications
 - Outpatient setting (routine and urgent)
- Safety
 - Site identification and consent
 - Infection prevention
 - Prevent injury or tissue damage
 - Patient comfort
- Technique
 - Effective injection/aspiration
 - Key to success: anatomy

Joint Injection Techniques

- Indications
 - Diagnostic
 - Evaluation of synovial fluid
 - Local analgesia
 - Therapeutic
 - Improve pain/mobility
 - Adjuvant therapy
- Caution
 - Introduction of infection/worsen bleeding
 - Recurrence
Indications: Aspiration

- In setting of injury/trauma, historically:
 - Aspiration to obtain further diagnostic information
 - Hemarthrosis: ligament injury
 - Fat globules: bony injury
- Now essentially a historical use
 - Advances in imaging modalities
 - Avoid risk: injury, infection, or patient discomfort

Indications: Aspiration

- Diagnosis of infection or inflammatory arthritis,
 - Gout, RA, Pseudogout, etc.
 - Send aspirate for microbiological or fluid studies
- Management of septic arthritis
 - Serial aspiration
 - Rarely used as part of management strategy
 - Poor surgical candidate
 - May also be used to monitor clinical response
 - Send follow up aspirate for evaluation
Indications: Therapeutic Injection

- **Pain or inflammation of joint:**
 - Osteoarthritis/ Degenerative Joint Disease
 - Rheumatoid Arthritis or other inflammatory arthropathy
- **Tendonitis/Tenosynovitis/Bursitis:**
 - Use Caution - may result in tendon injury
 - Inject bursa or tendon sheath
 - Rotator cuff tendinopathy/subacromial bursitis
 - Trigger finger, DeQuervain’s tenosynovitis
 - Greater Trochanter, pes anersinus, other

Indications: Therapeutic Injection

- **Enthesopathies**
 - Lateral epicondylitis (Tennis elbow)
 - Medial epicondylitis (Golfer’s elbow)
 - Achilles or Plantar fasciitis (caution)
Contraindications:

Absolute:
- Skin infection, contamination, or compromise at injection site
 - May be able to use alternate approach or location
- Infected joint or bursa
 - Contraindication for Therapeutic injection
 - Indication for Diagnostic aspiration
- Presence of Joint Prosthesis
 - Consult Ortho or refer patient back to treating surgeon
- Patient preference/refusal

Relative:
- Anatomic difficulty
 - Severe scarring
 - Ankylosis
 - Deep structure (intra-articular hip)
 - Excessive soft tissue envelope
 - Consider image guidance
- Coagulopathy
 - depending on strength of indication, may be managed proactively
- No/Minimal relief from previous
- Osteoporosis surrounding
- Uncontrolled diabetes mellitus
Complications:

- Infection
- Reaction (local)
- Steroid flare
- Soft tissue atrophy
- Depigmentation
- Tendon rupture
- Systemic effects
- Direct needle injury

Safety:
Site Identification and Consent

- Informed consent
 - Review procedure, risks and benefits with patient
 - Document! (may be verbal or written)
- Determine correct site - patient agreement
 - Follow your institutional protocol
 - Each site of procedure should be identified
- Alert patient
 - Verbal confirmation of appropriate site
- Non-participating patient–include representative
 - Mark site according to institutional protocol
Safety: Infection Prevention Skin Prep

- Decrease contamination/sterilize skin
- Do not place through non-intact skin!
 - Rash, cellulitis, psoriatic plaque, abrasion, etc.
 - May need alternate technique or delay procedure
- Skin Cleanse with antiseptic
 - Alcohol, Povidone-iodine and/or Chlorhexidine

Safety: Infection Prevention Skin Prep

- Using basic sterile technique to prep:
 - Always wear gloves
 - Scrub field in circular pattern
 - center and moving outward
 - Do not touch field with non-sterile object
 - May use sterile alcohol swab to wipe injection site
 - If hair removal needed - snip or use clipper, not razor
- Allow alcohol to dry
 - Drying action hydrolyses bacteria to kill
- Perform procedure immediately to avoid re-contamination
Safety:
Patient comfort

- Try to make the experience as pleasant as possible
 - Avoid further discomfort or complications
 - Positioning, relaxation, watching, “Needle phobia”
- Use of Analgesics
 - Topical, local
- Accurate, confident injection technique
 - Know your anatomy and equipment
 - Needle and fluid “feel”
 - Difficult to reach target
 - Consider image guidance
 - Reassures patient

Safety:
Infection Prevention

- Use “no-touch” technique to place needle
 - Important to avoid contaminating “field” by touching prepped area with unsterile object, e.g. glove
 - Use of sterile gloves or sterile drape is optional
 - May require prepping larger field, and help of assistant
 - May be helpful if you need to palpate area for accuracy
- Cover with sterile dressing following injection
 - Compressive wrap optional
Injection Video:
Knee anatomy, Skin prep and Analgesia

Safety:
Avoid injury

- Direct mechanical injury,
 - bone, nerve, soft tissue, cartilage
- Vascular:
 - Intravascular injection, bleeding/ bruising
- Skin compromise:
 - Fistula formation
- Important to know anatomy of the area
- Medication Safety
 - Avoid allergy, side effects
Safety:
Medication - Steroid

- Efficacy generally accepted but little evidence
- Systemic side effects
 - Short term:
 - hyperglycemia
 - Persists for variable period following injection
 - Long term:
 - AVN
 - impaired immunity
 - adrenal suppression
 - Relatively rare with common injection dosing and occasional use

Safety:
Medication - Steroid

- True Allergy uncommon
 - May include allergy to carrier or other component of formulation
 - Still reported- rarely
- Local effects
 - Increased risk of infection
 - Possible increased risk of future periprosthetic infection
 - skin depigmentation
 - tendon attrition/tears
 - Actual effect on joint unknown, difficult to pinpoint
Safety: Medication - Local anesthetics

- Lidocaine, ropivacaine, bupivacaine, etc.
- Allergy
- Toxicity
 - High intra-articular concentration linked to chondrotoxicity
 - CNS and Cardiovascular effects
 - Large dose
 - Inadvertent intravascular injection

Injection/Aspiration Technique

General comments:
- Sterile prep of area
 - Collect needed materials ahead of time
 - Consider aspiration of the area just prior to injection
 - MAY yield fluid, confirming needle tip in “space”
 - Not always successful:
 - Smaller space, Minimal effusion
 - Edematous inflammatory tissue may obstruct needle on aspiration.
 - Safety: confirm that needle is NOT intravascular.
 - No blood return
- Fluid flow
 - Free flow of fluid -> needle reached the target
Injection Setup

Injection/Aspiration Technique Tips and Tricks-Needles

- Use same size needle for injecting/aspirating same fluid each time
 - consistent “feel” for the flow
- Smaller gauge may produce too much resistance to flow:
 - false feeling of not being in the space with injection attempt
 - may yield a false “dry tap” with aspiration attempt
- Larger gauge: flow may feel “too easy” even if not in joint.
- Needle length: Spinal needle for deep structures
 - Larger gauge due to flexibility and resistance to flow (18 or 20g)
Specific Technique: Knee

- Relevant anatomy
 - Joint capsule extends from just below joint line to above patella, including suprapatellar pouch
 - Fibular head is lateral side, below joint line
 - Extra articular
 - Prepatellar bursa DOES NOT communicate with joint normally, Suprapatellar Bursa DOES.

Specific injection technique Knee

- Approach: anterior medial (1)
 - Knee flexed, patient seated
 - Medial femoral condyle
 - Needle aims directly posterior
 - Touch but do not penetrate articular cartilage
- Approach: anterior lateral (2)
 - Knee flexed, patient seated
 - Lateral arthroscopic portal
 - Location corresponds to lateral joint line, just lateral to Patella tendon
 - Aim needle posteromedially to enter femoral notch
 - Fluid should flow freely, otherwise advance slightly and gently apply pressure again
 - Needle may be in prepatellar fat pad
Simulation of Knee Injection with Anatomic Model

Specific injection technique: Knee

- Approach: lateral suprapatellar
 - Knee extended, patient supine
 - Inject suprapatellar pouch from lateral side
 - Palpate IT band (Posterior) and Quad Tendon (Anterior)
 - Insert needle at level just proximal to superior pole of patella
 - Should feel resistance at capsule, then “Pop” through
 - Needle should be able to pivot proximal and distal under patella/quad tendon
Injection of pre-injected Knee with Viscosupplementation

Specific technique: Greater Trochanteric Bursa Injection

- Approaches:
 - Posterolateral “hip” / upper thigh
 - Lateral decubitus with affected side up
 - Can be done with patient standing and leaning over a table
 - Spinal needle sometimes needed for length
 - if large soft tissue envelope
Specific technique: Greater Trochanteric Hip Injection

- Indications
 - Trochanteric “bursitis”
 - Maximally Painful area of posterolateral trochanter
 - may not correspond to physical fluid sac
 - Differentiate from Gluteus Medius tendon insertion
 - Inject point of maximal tenderness
 (NOT G. Medius!)
 - Avoid injection of tendon to avoid attritional tear

Specific technique: Greater Trochanteric Bursa Injection
Specific Technique: Shoulder Subacromial Injection

- Relevant anatomy
 - Subacromial bursa is separate from Glenohumeral joint if rotator cuff is intact
 - Lies between the Acromion and the rotator cuff tendons
- Positioning:
 - Seated upright or supine/beach chari
 - Seated position opens up subacromial space due to gravity on arm
 - Note: If there is full thickness Rotator Cuff tear, medication also reaches the Glenohumeral joint

Specific Technique: Shoulder Subacromial Injection

- Diagnostic and/or therapeutic
- Indications
 - Subdeltoid/subacromial bursitis
 - Rotator cuff impingement
 - Rotator cuff tendinopathy
 - Adhesive capsulitis
 Specific Technique: Shoulder

- **Multiple Shoulder injection targets**
 - **Subacromial Bursa**
 - Most commonly performed
 - Topic of this instruction
 - **Acromioclavicular Joint**
 - Small joint superior/anterior to GH joint, lateral end of clavicle
 - May be difficult due to osteophytes
 - **Glenohumeral Joint**
 - (Intra-articular Shoulder)
 - Ultrasound guidance

 Specific Technique: Shoulder

Subacromial Injection

- Palpate the distal, lateral, and posterior edges of acromion
- As prior with aseptic technique
- Needle is inserted just inferior to posterolateral edge of acromion
 - Directed anteromedially
Acknowledgement

• Special thank you to Dr. Anne C. Sullivan, MD and Brian Valus, PA-C, for their expert assistance in preparing this presentation, including live patient demonstrations.
• Many thanks also to the patients who consented to participate in the demonstrations for educational purposes.

References

• Sterile technique: https://onesource.osumc.edu/departments/PerioperativeServices/Documents/UHRossPolicies/Aseptic%20Technique%20UH.pdf