Common Upper Extremity Conditions Part 1: Compression Neuropathies

Hisham Awan, MD
Director, OSU Hand and Upper Extremity Center
Associate Professor, Hand and Upper Extremities
Program Director, Hand and Upper Extremity Fellowship
The Ohio State University Wexner Medical Center

Compression Neuropathies of the Upper Extremity

- Objectives
 - Discuss Pathology of compressive Neuropathies
 - Discuss the most common UE nerve compression syndromes
 - Carpal Tunnel Syndrome (CTS)
 - Cubital Tunnel Syndrome (CuTS)
 - Ulnar Tunnel Syndrome

Compression Neuropathy Defined

- Dysfunction of a peripheral nerve caused by pressure
- Symptoms manifested
 - Sensory
 - Motor
 - Autonomic

Background

- Nerve compression occurs at many locations
 - Intrinsic Compression
 - Intraneural lipoma
 - Schwannoma/Neurofibroma
 - Hamartoma
 - Extrinsic Compression
 - Swelling
 - Fascia
 - Masses (ganglion, aberrant anatomy)
- Most Common: Carpal Tunnel
 - Ulnar, radial, other branches also possible
Intrinsic Compression - Lipoma of Median Nerve

Courtesy of ASSH

Median Nerve Schwannoma

Lipofibromatous Hamartoma

Courtesy of ASSH
Lipofibromatous Hamartoma

Extrinsic Compression

Guyon's Canal Ganglion

Ulnar Artery Thrombosis

Nerve Compression Pathophysiology

- Altered Signal Conduction:
 - Ischemia and impaired venous return
 - Intraneural edema
 - Decreased axoplasmic transport
 - Membrane instability
 - Fibrosis

• Membrane instability
• Fibrosis

Compression
PATHOLOGY
• Localized swelling
• Abscess formation
• Nerve fibrosis
• Axonal degeneration
• Loss of function

Compression of the ulnar nerve at the Guyon's canal may cause nerve compression and lead to symptoms of ulnar nerve compression syndrome.
Risk Factors

- Genetics***
- Obesity
- Hypothyroidism
- Diabetes
- Pregnancy
- Renal disease
- Inflammatory arthritis
- Acromegaly
- Mucopolysaccharidosis

- Amyloidosis
- Multiple myeloma
- Gender (Women>Men)
- Age (> 50 y/o)
- Smoking
- Occupational exposure**

Pathophysiology: Multifactorial

- Systemic disease creates “at risk” environment
 - Diabetes, hypothyroidism, smoking
 - Microvascular disease
- Symptoms develop when pressure exceeds nerve threshold

General Principles of Diagnosis

- History & Physical
- Testing: No test is 100% specific and sensitive
 - EMG/NCS
 - Ultrasound
 - Hand diagrams
 - Static 2-point discrimination
 - Semmes-Weinstein
 - Provocative maneuvers
 - Physical findings (atrophy, clawing, etc.)

General Principles: EMG/NCS

- Not always positive in early stages
- False negative results may occur
- Operator dependent
- Allows localization of lesion
- Can follow progression
- Values may never normalize after decompression
Imaging

• Generally of Limited Use
• Ultrasound: becoming more popular
• Plain Radiographs: 2 views (orthogonal) to rule out:
 • Post-traumatic deformity
 • Arthritic changes
• CT or MRI
 • Rarely indicated
 • Rule out suspected soft tissue mass
 • Rule out occult fractures

Ultrasound

• Median Nerve enlargement > 10 mm at CTS inlet
• Sensitivity as high as 97.9%
• Can also be used to guide injection

Carpal Tunnel Syndrome

• Most common compressive neuropathy
• Affects 0.1-10% of the general population
• 200,000+ surgeries performed annually

Anatomy of the Carpal Tunnel

• Contents:
 • Median nerve
 • FDP (flexor digitorum profundus) X 4
 • FDS (flexor digitorum superficialis) X 4
 • FPL (flexor pollicis longus)

Courtesy of ASSH
Symptoms of CTS

- Numbness, paresthesia in median distribution
- Worse with work or at night
- Relieved by shaking hand, dependent positioning
- May include ulnar digits
- May radiate up forearm or even to shoulder
- Swelling of hand
- Weakness, clumsiness, dropping objects

Signs of CTS

- Tinel’s test

Signs of CTS

- Phalen’s test

Signs of CTS

- Durkan’s Test

Courtesy of ASSH
Signs of CTS

- Thenar muscle wasting

Sensory Testing for CTS

- 2-point discrimination
- Monofilament
- Vibration

CTS - Diagnosis

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phalen</td>
<td>10-88%</td>
<td>47-100%</td>
</tr>
<tr>
<td>Tinel</td>
<td>26-79%</td>
<td>40-100%</td>
</tr>
<tr>
<td>Durkan</td>
<td>87%</td>
<td>90%</td>
</tr>
<tr>
<td>Semmes-Weinstein</td>
<td>Up to 91%</td>
<td>Up to 80%</td>
</tr>
</tbody>
</table>

Diagnostic Testing

- Nerve conduction study/EMG
 - Motor latency 4.5 ms or 1 ms > opposite hand
 - Sensory latency 3.5 ms or 1 ms > opposite hand
- Ultrasound

Courtesy of ASSH
NCS vs Ultrasound

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCS/EMG</td>
<td>Painful</td>
</tr>
<tr>
<td>R/O other pathology</td>
<td>False negative</td>
</tr>
<tr>
<td>Can compare serial exams</td>
<td></td>
</tr>
<tr>
<td>(pre and post surgery)</td>
<td></td>
</tr>
<tr>
<td>Indicates severity</td>
<td></td>
</tr>
<tr>
<td>Ultrasound</td>
<td>Does not evaluate other</td>
</tr>
<tr>
<td></td>
<td>causes Operator dependent</td>
</tr>
<tr>
<td>Can be done at same visit</td>
<td></td>
</tr>
<tr>
<td>in office</td>
<td></td>
</tr>
<tr>
<td>Can use to guide injections</td>
<td></td>
</tr>
</tbody>
</table>

Median Nerve Compression: Differential Diagnosis

- Peripheral Neuropathy
- Cervical Spine
- Thoracic Outlet
- Arm/Forearm
 - Ligament of Struthers
 - Lacertus Fibrosis
 - Pronator Teres

Median Nerve Compression: Differential Diagnosis

- Peripheral Neuropathy
- Cervical Spine
- Thoracic Outlet
- Arm/Forearm
 - Ligament of Struthers
 - Lacertus Fibrosis
 - Pronator Teres

CTS 6 Diagnostic Criteria

1) Numbness in the Median nerve distribution
2) Nocturnal numbness
3) Weakness/Atrophy of the Thenar musculature
4) Tinel’s sign
5) Phalen’s test
6) Loss of 2-point discrimination

Carpal Tunnel Grading

- Mild
 - Duration < 1 year
 - Intermittent numbness
 - Normal sensory testing
 - No weakness or atrophy
 - Minimal NCV changes, no denervation
- Moderate
 - Continuous numbness, paresthesias
 - Increased threshold on sensory tests
 - Increased distal motor latency
- Severe
 - Persistent loss sensory+ motor function
 - Thenar atrophy
Treatment of CTS

- Splint

![Splint Image](Courtesy of ASSH)

Treatment of CTS

- Injection of Steroid

![Steroid Injection Image](Courtesy of ASSH)

CTS – Predictors of Outcome with Conservative Treatment

- Factors – Age>50 yrs, Duration sx> 10 mo, Constant paresthesias, Stenosing tenosynovitis, Phalen’s + in <30 s (Kaplan et al, JHS 15B, 1990)

<table>
<thead>
<tr>
<th>Factors Present</th>
<th>% Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>66</td>
</tr>
<tr>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Surgical Treatment of CTS

- Open Carpal Tunnel Release

![Carpal Tunnel Surgery Image]
Open vs Endoscopic CTR

- 2-3 week earlier return to work with endoscopic versus open CTR
- No substantial difference in final outcome
- No difference in Complication Rates

What Are Hand Surgeons Doing?

- 70% of hand surgeons who responded use Open or Mini Open CTR
- 26% perform endoscopic release
- Most under local with sedation, but 11% use general anesthesia
 - Only 8% use local only

Endoscopic Carpal Tunnel Release

![Endoscopic Carpal Tunnel Release](image)
Results

Ulnar Nerve Compression
- Cubital Tunnel
 - Compression: Most commonly
 - Traction: Not well understood
 - Subluxation: Typically younger patients
- Guyon's Canal
 - Compression at 3 Sites
 - Idiopathic
 - Hook of Hamate Fracture
 - Mass/Ganglion Cyst

Cubital Tunnel Syndrome
- Clinical syndrome of numbness, pain, and weakness associated with compression of the ulnar nerve at the elbow.
- C8-T1
- Terminal continuation of the medial cord of the brachial plexus
History and Physical: Cubital Tunnel

- Symptoms
 - Numbness/tingling
 - Night pain
 - Elbow flexion
 - Snapping at elbow
 - Pain at Medial Elbow
 - Weakness with grip/pinch
- Late Symptoms/Signs:
 - Persistent Numbness
 - Progressive weakness
 - Intrinsic Wasting
 - Clawing

History and Physical

- Exam
 - Tinel’s
 - Elbow flexion test
 - Weakness: Froment’s Sign
 - Intrinsic muscle atrophy
 - Ulnar Clawing/Papal Sign

Electrodiagnostic Studies

- Inching technique to localize site of compression
- Confirm diagnosis
- Evaluate degree of denervation
- Evaluate degree of conduction delay
- Rule out proximal involvement
 - Pancoast tumor, cervical radiculopathy, brachial plexopathy, thoracic outlet

Treatment: Conservative

- Nighttime pillow/extension splinting
- Elbow pad/Avoidance of direct trauma, compression
- Activity Modifications
Treatment: Surgery

- Cubital tunnel release with or without transposition of the nerve
 - Submuscular or Subcutaneous

Treatment: Surgical Sites of Compression

Treatment: Surgery – Submuscular Transposition
My Preference – Mini Incision In Situ Release

Indications for Transposition

• Significant Subluxation
• Osteophytes in Cubital Tunnel
• Part of Larger Operation
 • Fixation of Fractures
 • Elbow Arthroplasty

Ulnar Nerve Subluxation
Ulnar Nerve Subluxation
– s/p Transposition

- Compression of the nerve over Guyon’s canal
- Symptoms in fingers but not in dorsal hand
- May present as isolated motor weakness, or paresthesias, or combined sensory/motor

Ulnar Tunnel Syndrome

- Ganglion cysts - most common
- Ulnar Artery Aneurysm or thrombus
- Hamate Hook Fracture
- Lipoma
- Repetitive trauma (bicyclists)

Borders of Canal
- Floor = flexor retinaculum
- Ulnar Border = Pisiform & Abd. Dig. Minimi
- Radial Border = Hook of the Hamate
- Roof = Volar Carpal Lig. & palmaris brevis

Courtesy of ASSH
Guyon’s Canal Zones

- Zone 1 = proximal to bifurcation
 - Ganglions (most common), anomalous muscle
 - Fractures of hook of hamate
- Zone 2 = deep motor branch only
 - Hook of hamate fracture, ganglion
- Zone 3 = superficial sensory branch only
 - Ulnar artery thrombosis
 - Synovial inflammation

Nonsurgical Treatment of Ulnar Tunnel Syndrome

- Diagnostic Imaging to evaluate vascular lesion - MRA, Doppler, Angiogram, etc.
- MRI/CT scan to r/o masses, fractures
- Activity modification - avoid pressure
- Wrist splints, NSAID’s
- Padded gel gloves

Surgical Decompression of Guyon’s Canal

- Indirect decompression done by CTR alone
- Dissection from proximal to distal to protect branching pattern
- Evaluate deep motor branch of ulnar nerve
- Protect palmar cutaneous branch of ulnar nerve
- Removal of mass, pressure

Ulnar Tunnel Syndrome: Guyon’s Canal

Right Palm/ Guyon’s Canal

Courtesy of ASSH
Ganglion in ulnar tunnel

Return to work and return to activities after surgery for compression neuropathy

Long-term prognosis after surgery

Non-osseous Conditions of the Upper Extremity: Tendinopathies

Kanu Goyal, MD
Assistant Professor
Division of Hand and Upper Extremity Surgery
Department of Orthopaedic Surgery
The Ohio State University Wexner Medical Center
Agenda

- Stenosing Tenosynovitis
- De Quervain’s Tenosynovitis
- Intersection Syndrome
- EDC tendonitis
- Snapping ECU
- Lateral Epicondylitis
- Medial Epicondylitis

Stenosing Tenosynovitis

- “Trigger Finger”
- Definition:
 - Catching or locking of the finger secondary to A1 pulley thickening

- Size mismatch between flexor tendon & A1 pulley
- Thickened stenotic A1 pulley
- Nodular enlargement of flexor tendons

- Grades:
 - 1. pain only
 - 2. catches but can be actively unlocked
 - 3. catches but must be passively unlocked
 - 4. locked with a PIP joint flexion contracture

Image from American Society for Surgery of the Hand
Stenosing Tenosynovitis

- Exam: tender volarly over A1 pulley and triggering noted
- Causes:
 - Most commonly idiopathic
 - Can be associated with:
 - Diabetes
 - Hypothyroidism
 - Rheumatoid arthritis
 - Recent hand surgery
 - Trauma
 - Female predilection

Stenosing Tenosynovitis

- DDx:
 - Snapping of MCPJ collaterals on osteophyte
 - Sagittal band rupture / snapping extensor tendon
 - Swan neck deformity
 - Slip of FDS catching under the pulley

Stenosing Tenosynovitis

- Treatment options
 - Activity modification
 - Trigger finger splint at night
 - Steroid injections
 - Surgical Release of A1 pulley

Stenosing Tenosynovitis

- Steroid injections
 - 50-70% effective
 - Reportedly equally effective in diabetics
 - Does not need to be within flexor sheath
 - Can alter blood glucose for up to a week
 - May offer a 2nd injection before surgery
Stenosing Tenosynovitis

- Surgical release
 - Longitudinal vs oblique vs transverse incision
 - Protect NV bundle
 - Thumb radial digital nerve
 - Completely release A1 pulley
 - Actively flex digit if wide awake
 - Release palmar pulley, vent A2 if necessary.
 - Release ulnar FDS slip if needed

De Quervain’s Tenosynovitis

- Extensor compartments
 - 1st: APL & EPB
 - 2nd: ECRL & ECRB
 - 3rd: EPL
 - 4th: EIP & EDC
 - 5th: EDM
 - 6th: ECU

De Quervain’s Tenosynovitis

- Definition:
 - Stenosing tenosynovitis of the first dorsal extensor compartment (APL & EPB)
 - Extensor sheath becomes relatively stenotic or narrowed leading to pain

De Quervain’s Tenosynovitis

- EPB
 - Distal muscle belly
 - Absent is 5-7% pts
- APL
 - Often Multiple slips
De Quervain’s Tenosynovitis

- Demographics:
 - Overuse of thumb
 - New mothers/parents
 - Elderly
 - 6:1 women

- Atraumatic radial sided wrist pain

- Diagnosis
 - Pain at or just proximal to the radial styloid
 - Worsens with ulnar deviation of the wrist
 - Finkelstein test

- Differential diagnosis
 - Intersection syndrome
 - Thumb CMC joint arthritis
 - Wrist STT arthritis
 - Radioscaphoid arthritis
 - Wartenberg Syndrome

- Treatment:
 - Activity modification, NSAIDs, thumb spica splint
 - Steroid injection
 - Brace shown to improve outcomes after injection
 - Surgical release
De Quervain’s Tenosynovitis

- Injections:
 - 60% success rate
 - I personally offer 2 injections at most
 - May elevate blood glucose for a week
 - Subcutaneous injection is effective

De Quervain’s Tenosynovitis

- Surgical release of first dorsal compartment
 - Indicated if patient dissatisfied with non-operative measures.
 - Division of the fibro-osseous sheath over the first dorsal compartment (dorsal edge)
 - Care must be taken to identify all slips of both APL and EPB tendons

De Quervain’s Tenosynovitis

- Avoid branches of the superficial radial nerve

Intersection Syndrome
Intersection Syndrome

- Pain and swelling due to entrapment of and compression of 2nd compartment where the 1st dorsal compartment intersects it. Approximately 5cm proximal to wrist joint.

Intersection Syndrome: The subtle squeak of an overused wrist. JABFM, July 2017

- History:
 - Common in rowers and weight lifters (repetitive wrist extension)

- Exam:
 - TTP over site of intersection
 - Crepitance at intersection site with resisted wrist and thumb extension

- Imaging:
 - MRI
 - Peritendinous edema
 - Fluid surrounding the 1st/2nd extensor compartments

Intersection Syndrome: The subtle squeak of an overused wrist. JABFM, July 2017

- Treatment:
 - Immobilization
 - Steroid injection
 - Surgical release
 - Longitudinal incision to release 1st and 2nd dorsal compartment and proximal fascia
 - Retinaculum is left open

Intersection Syndrome: The subtle squeak of an overused wrist. JABFM, July 2017

EDC Tendonitis

- Rare
- Drummer's wrist
- Repetitive wrist extension
- Inject, brace, stop drumming

www.pexels.com
ECU pathology

- Ulnar sided wrist pain
- Synergy Test positive
- Stenosing tenosynovitis
 - All Treatment similar to De Quervain’s
- Tendinopathy (enlarged and thickened tendon)
 - Non-operative measures similar
 - Surgically, consider debridement or excision
- ECU subluxation or ECU Snapping

Snapping ECU tendon

- Traumatic or overuse injuries cause attenuation or rupture of ECU subsheath

Snapping ECU tendon

- History:
 - Atraumatic/Asymptomatic
 - Injury sometimes recalled
 - Pain/snapping over dorsoulnar wrist
- Exam:
 - Extension/supination of the wrist elicits a painful snap
 - ECU tendon reduces with pronation
- Imaging:
 - MRI demonstrates peritendinous edema
 - If subsheath incompetent, ECU tendon will snap ulnarly
Snapping ECU tendon

- Differential Diagnosis of Ulnar Sided Wrist Pain:
 - Other ECU pathology
 - TFCC tears
 - DRUJ synovitis/instability
 - Pisotriquetral arthritis/cysts
 - Lunotriquetral tears

Snapping ECU tendon

- Non-Operative Treatment:
 - Wrist splint for tendinitis
 - Long arm cast in pronation

- Operative:
 - ECU subsheath repair (acute) vs reconstruction (chronic)
 - +/- wrist arthroscopy (concurrent TFCC tear in 50% of cases)
 - Change ECU vector by inserting onto ring finger MC base

Lateral Epicondylitis

- “Tennis elbow”
 - anyone and everyone
- Repetitive eccentric overload of common extensor tendon
 - Primarily tendinopathy of ECRB
 - May also involve microtears of ECRL, ECU, and EDC
- Most common cause of elbow pain

Lateral Epicondylitis

- Physical exam
 - Point tenderness at ECRB origin (just distal to lateral epicondyle)
 - Decreased grip strength
 - Provocative tests:
 - Resisted wrist extension with elbow fully extended
 - Resisted extension of the middle finger
Lateral Epicondylitis

- Imaging
 - Plain films usually normal
 - Calcification of extensor origin may be present but doesn't usually change management
- MRI
 - For uncertain diagnoses
 - Increased signal at ECRB origin (~50%); thickening
 - Evaluate LUCL

Lateral Epicondylitis

- DDx:
 - Radial tunnel syndrome (5% concomitant Dx)
 - 3-4 cm distal/anterior to lateral epicondyle
 - LUCL injury / Posterolateral Rotatory Instability (PLRI)
 - Capitellar OCD
 - Radiocapitellar arthritis
 - Radial head fracture
 - Triceps tendinitis
 - Cervical radiculopathy

Lateral Epicondylitis

- Non-operative treatment (95% success)
 - Activity modification (rest), ice, NSAIDs
 - Home Stretching Program
 - Counter-force brace
 - Wrist brace
 - Steroid injections
 - Physical therapy (iontophoresis/phonophoresis)

Lateral Epicondylitis

- Operative treatment
 - Indicated if failed non-op for 6-12mo
 - Open ECRB debridement
 - Stay anterior to LUCL origin
 - Deep/posterior to ECRL
 - Excise degenerative ECRB tendon
 - Decorticate epicondyle
 - Side-to-side tendon repair
 - Arthroscopic ECRB release TENEX

Home exercise program
Medial Epicondylitis

- “Golfer’s elbow”
 - Pitchers, bowlers, racquet sports
 - Tendinosis of flexor/pronator origin
 - Secondary stabilizers to valgus stress
 - PT, FCR, PL, FDS, FCU
 - Traditionally Pronator Teres > FCR
 - Less common and harder to treat vs lateral epicondylitis

Medial Epicondylitis

- Physical Exam
 - TTP 5-10mm distal/anterior to medial epicondyle
 - Pain with resisted pronation & wrist flexion
 - Always check for valgus instability and ulnar

Medial Epicondylitis

- Treatment
 - Non-operative similar to Lateral Epicondylitis
 - Operative:
 - Indicated after 6mo failed non-op
 - Debridement of PT/FCR, reattachment of flexor-pronator group
 - Good to excellent outcomes in 80%
 - Not as good as surgery for lateral epicondylitis
 - Worse outcomes with pre-op ulnar nerve symptoms

JAAOS 2015;23