Common Foot & Ankle Injuries

Adam T. Groth, MD
Associate Professor
Chief, Division of Foot & Ankle Reconstruction
Jameson Crane Sports Medicine Institute
Department of Orthopaedics
The Ohio State University Wexner Medical Center

Division of Foot and Ankle Reconstruction

- Adam T. Groth, MD
- Kevin P. Martin, DO
- Timothy Miller, MD
- Julie Swain, APRN-CNP

- OSU Podiatry
- OSU Sports Medicine Family Medicine
- OSU PM&R
- OSU Physical Therapy
Acknowledgement

• Professor Emeritus Ian J. Alexander

Disclosures

• None

Foot & Ankle Center of Excellence

• Comprehensive care for all adult foot and ankle problems:
 • Sports injuries / Sprains / Cartilage disorders
 • Arthritis / Degenerative conditions
 • Deformities
 • Trauma / Fractures
 • Bunion / Hammertoes
 • Whatever is causing your pain
Common Problems of the Foot & Ankle

- Acute ankle sprains
 - Late pain after ankle sprains / associated injuries
- Stress fractures
- Achilles tendon ruptures
- Plantar fasciitis
- Bunions
- Ankle arthritis

Acute Ankle Sprain

- Exceedingly common
 - 10-40% of civilian athletic injuries annually
 - Significant time lost to injury
 - 1 inversion event per 10,000 people per day
 - 23,000 to 30,000 ankle injuries per day in U.S.
 - 10% or ER visits in U.S.
 - 45% of all basketball injuries
 - 31% of collegiate football injuries
 - 20% of soccer injuries
 - Leading cause of time loss in NFL
 - Most common cause of acute injury in volleyball
The Ankle Sprain

- Mainstay of treatment is functional rehabilitation
 - 80% make a full recovery with conservative treatment

- 20-30% may be symptomatic 3 months after surgery

- Associated injuries may result in continued pain and dysfunction

- Repeat sprains or inadequate rehabilitation may result in chronic lateral instability in 20%

Anatomy and Biomechanics

Calcaneofibular (CFL)

Anterior Talofibular (ATFL)
Mechanism

• Position of instability: plantarflexion and inversion
 • Talus is more narrow posteriorly
• Failure occurs in predictable order
 • Anterolateral capsule
 • ATFL (involved in 85%)
 • Restraint to inversion in PF
 • CFL (also injured in 20-40%)
 • Restraint to inversion in neutral or dorsiflexion
 • PTFL rarely injured

Diagnosis

• History of injury
 • Mechanism of injury
 • Forces involved
 • Direction of foot deviation
 • Prior episodes and frequency
 • Immediate ability to weight bear
Examination of the Foot & Ankle

• Examination
 • Be systematic (knee to toe)
 • Inspection / gait
 – Ecchymosis and swelling
 – Localize tenderness
 » Soft tissue vs bony
 – Ambulatory capacity
 – Neurovascular exam
 – Range of motion

Examination of the Foot & Ankle

• Examination – special tests
 • Anterior drawer
 • Squeeze test
 • External rotation stress test
Anterior Drawer

- Allow the leg to hang freely with foot plantarflexed 25°
- Stabilize the tibia with 1 hand and grasp the heel with the other.
- Pull foot anteriorly, allowing it to rotate internally (around the deltoid) as it translates.
- Incompetent ATFL => Excessive anterior translation relative to other side

* Acute laxity does not correlate with development of late symptoms = does not always require surgery

Are RADIOGRAPHS indicated?

- Ottawa rules

- ANKLE X-rays
 - Posterior tenderness distal 6 cm of tibia or fibula
 - Malleolar tip tenderness
 - Both immediate inability to WB and not able to walk more than 4 steps in ED
Are RADIOGRAPHS indicated?

- Ottawa rules
- **FOOT X-rays**
 - Navicular tenderness
 - 5th metatarsal base tenderness
 - Both immediate inability to WB and not able to walk more than 4 steps in ED

MRI

- Not required in the ACUTE setting
- Considered for the patient with chronic pain (>6 weeks) after ankle sprain
 - Useful for assessing concomitant pathology
 - 90% accuracy for ATFL and CFL tears
- Does not give an absolute indication for surgery
Clinical Classification

• Mild Sprain
 • Able to walk without limp
 • Minimal swelling or point tenderness
 • Pain with reproduction of mechanism of injury

• Moderate Sprain
 • Walking with a limp
 • Localized swelling with point tenderness
 • Unable to rise on toes or hop on injured ankle

• Severe Sprain
 • Prefers crutches and has difficulty bearing weight
 • Diffuse tenderness and swelling

<table>
<thead>
<tr>
<th>Grade</th>
<th>Edema, ecchymosis</th>
<th>Weight bearing</th>
<th>Ligament pathology</th>
<th>Instability testing (anterior drawer)</th>
<th>Time to return to sport</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Localized, slight</td>
<td>Full or partial without significant pain</td>
<td>Ligament stretch</td>
<td>None</td>
<td>11 days</td>
</tr>
<tr>
<td>II</td>
<td>Localized, moderate</td>
<td>Difficult without crutches</td>
<td>Partial tear (ATFL)</td>
<td>None or slight</td>
<td>2-6 weeks</td>
</tr>
<tr>
<td>III</td>
<td>Diffuse, significant</td>
<td>Impossible</td>
<td>Complete tear (ATFL + CFL)</td>
<td>Definite</td>
<td>4-26 weeks</td>
</tr>
</tbody>
</table>
Mainstay of treatment is nonoperative management, even in the athletic population.

Treatment – Acute Ankle Sprain

- P.R.I.C.E
 - Protection
 - Rest
 - Ice
 - Compression
 - Elevation
- Progressive weightbearing as tolerated
- Early range of motion
- Physical Therapy – functional ankle rehabilitation
Treatment – Acute Ankle Sprain

Bracing
- Protection from inversion to prevent weaker type III collagen → elongation
- 3 weeks → collagen starts to mature, controlled stress on the ligament promotes proper collagen orientation

Functional Rehabilitation
- Ankle motion, stretching and strengthening will avoid harmful effects of immobilization on muscle, joint cartilage, and bone

- Full return to activities between 4-8 weeks

Treatment – Acute Ankle Sprain

Bracing
- Semi-rigid ankle support: shorter time to return to work & sport, less symptomatic instability at short-term follow-up

<table>
<thead>
<tr>
<th>Grade 1 & 2</th>
<th>Grade 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Ankle Sprain

- **Functional Rehabilitation**
 - Achieve full ROM
 - Peroneal tendon strengthening and proprioception
 - Gradual progression of weightbearing and return to play

 - Supervised PT has better outcome with regard to strength and proprioception in the short term
 - Re-injury rates and long term functional results similar to home therapy plans

The Ankle Sprain

- Grade I and II → good to excellent

- Grade III → a little more controversial
Acute Sprain → Chronic Instability

- 10-20% risk after ankle sprain
- Two types
 - Mechanical
 - Abnormal clinical laxity
 - Pathologic hypermobility of the tibiotalar joint
 - Sign
 - Functional
 - Subjective instability
 - Unreliable ankle, no demonstrable radiographic signs of instability
 - Symptom

Operative Indications for Lateral Ankle Reconstruction

- Continued pain and instability despite extensive non-operative management
 - Must rule out and/or treat other pathology
Surgical Management of Lateral Ankle Instability

- Anatomic reconstruction
 - Modified Brostrom lateral ligament reconstruction
 - Allograft lateral ligament reconstruction

Return to Play after Lateral Ligament Reconstruction

- Outcomes of athletes after Brostrom
 - 58% returned to preinjury level
 - 16% competing at a lower level
 - 26% discontinued sport but still active
 • (Maffulli et al, AJSM 2013)
Rehab and Recovery after Reconstruction

- Phase I – ROM
- Phase II – Endurance
- Phase III – Strength
- Phase IV – Power
- Phase V – Return to Sport Testing and Physician Clearance
 - Achieve 90% of contralateral limb strength

Clinically significant late pain after ankle sprain

- Clinically significant pain >6 weeks after injury without recurrent injury or instability
 - Consider pathology that may be in conjunction with an ankle sprain or consider a different diagnosis
 - Soft tissue lesions
 - Bone / articular lesions
Soft Tissue Lesions

• Anterolateral soft tissue impingement

 • **Complaint:** focal anterolateral pain, worse with dorsiflexion and cutting maneuvers

 • **Exam:** focal anterolateral ankle tenderness

 • **Treatment:** steroid injection; arthroscopic debridement

Soft Tissue Lesions

• Peroneal tendon tear

 • **Complaint:** focal lateral pain, worse with eversion

 • **Exam:** swelling, focal lateral tenderness, pain with eversion
Soft Tissue Lesions

- Peroneal tendon tear
 - **Treatment**: NSAID/immobilization, lateral heel wedge, surgical debridement or repair if no response

Soft Tissue Lesions

- Peroneal tendon subluxation
 - **Complaint**: pain and snapping of tendons over fibula
 - **Exam**: swelling, focal ttp posterior to distal fibula, dislocation of tendons with resisted eversion
Soft Tissue Lesions

• Peroneal tendon subluxation
 • Treatment: fibular groove deepening and retinacular reconstruction

Soft Tissue Lesions

• Sinus tarsi syndrome
 • Complaint: pain and swelling lateral hindfoot, exacerbated on uneven surfaces
 • Exam: swelling, focal ttp anterior to distal fibula
 • Treatment: NSAID/immobilization, steroid injection, arthroscopic debridement
Syndesmotic Injury – High Ankle Sprain

- Collision sports, 10% of all ankle sprains
- Mechanism: external rotation
 - Direct force posterior calf of downed player with foot externally rotated
 - External rotation force on knee while foot firmly planted

Soft Tissue Lesions

- Syndesmotic injury
- Complaint: pain in distal leg and ankle with cutting/twisting
- Exam: external rotation stress test; squeeze test
- Xrays/MRI/US:
 - Stress xrays: disruption or widening of syndesmosis
Syndesmotic injury - Treatment

- Grade I and II:
 - RICE, PT, ankle brace or taping
- Grade III:
 - Acute- ORIF (screws/Tightrope)
 - Chronic- arthroscopic debridement + fixation
- Longer time to return to play and more residual symptoms than simple ankle sprain

Soft Tissue Lesions

- Superficial peroneal neuropraxia – intermediate branch

 - **Complaint:** anterolateral pain / burning / numbness
 - **Exam:** focal ttp, + tinels, decreased sensation dorsolateral foot
 - **Treatment:** neurontin / lidoderm patch / desensitization
 - Neurolysis vs. transection
Bone / Articular Lesions

- **Juxta-articular fractures**
 - **Complaint:** pain swelling in the area of the fx
 - **Exam:** focal ttp, pain with provocative maneuvers
 - **Imaging:** often apparent on xray but must look closely
 - Bone scan: hot locally
 - CT scan: define fragment size and articular involvement to define surgical plan
 - **Treatment:** immobilization in cast or boot 4-6 weeks
 - Excision vs. ORIF if large articular fragments

Bone / Articular Lesions

- **Juxta-articular fracture**
 - **Anterior process of the calcaneus**
Bone / Articular Lesions

- Juxta-articular fracture
 - Posterior talar process (Stieda process)

Bone / Articular Lesions

- Juxta-articular fracture
 - Lateral talar process
Bone / Articular Lesions

- Juxta-articular fracture
 - Dorsal navicular rim avulsion
- Distal fibular avulsion
- Cuboid avulsion

Bone / Articular Lesions

- Osteochondral lesion of the talus (OLT)
 - **Complaint:** swelling, sharp pain/aching deep in joint, occasional mechanical locking/catching
 - **Exam:** focal ttp @medial / lateral shoulder of talus
 - **Imaging:** xray may show cyst in chronic OLTs, CT/MRI is diagnostic
 - Sometimes an incidental finding
 - If not symptomatic does not require treatment
<table>
<thead>
<tr>
<th>Bone / Articular Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osteochondral lesion of the talus (OLT)</td>
</tr>
<tr>
<td>Non-operative management</td>
</tr>
<tr>
<td>• Non displaced acute lesions</td>
</tr>
<tr>
<td>• Immobilization x 6 weeks</td>
</tr>
<tr>
<td>Operative Management:</td>
</tr>
<tr>
<td>• Failed conservative care, large and/or displaced fragments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone / Articular Lesions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surgical Treatment:</td>
</tr>
<tr>
<td>• Mesenchymal cell stimulation</td>
</tr>
<tr>
<td>• Microfracture, abrasion chondroplasty</td>
</tr>
<tr>
<td>• Autograft osteochondral transfer</td>
</tr>
<tr>
<td>• Allograft osteochondral transfer</td>
</tr>
<tr>
<td>• Allograft chondral transfer</td>
</tr>
<tr>
<td>• Autologous chondrocyte implantation (ACI)</td>
</tr>
<tr>
<td>• Juvenile particulated allograft cartilage</td>
</tr>
<tr>
<td>• Biocartilage</td>
</tr>
</tbody>
</table>
Bone / Articular Lesions

- 5th metatarsal fractures
 - Poor blood supply to zone 2
 - Clinically assess for:
 - Area(s) of tenderness
 - Cavovarus foot posture
 - Chronicity of fracture (sclerosis or periosteal reaction)

Zones:
1= tuberosity avulsion fractures (may enter 5th MT-cuboid articulation)
2= Jones fractures (metaphyseal-diaphyseal junction)
3= stress fractures (distal to 4/5 IM ligaments, extends distally into diaphysis for 1.5cm)
Zone 1 - 5th MT tuberosity avulsion fractures

- Treatment usually hard-soled shoe or boot
- 4 wks usually patients asymptomatic
- Time to healing approximately 8 wks
 - Symptomatic nonunion - excise fragment

Jones Fracture
5th Metatarsal Jones fracture

- Non-displaced fractures: Nonweightbearing cast or boot 6-8 wks
- Consider surgery if:
 - Displaced fracture
 - Athlete
 - Quill 1995: 25-50% of fractures treated closed found not to heal or to re-fracture
- Delayed union or nonunion:
 - Return to play @8-10wks post ORIF if radiographically healed fracture

Jones fracture
Bone / Articular Lesions

• Tarsal coalition

 • Complaint: recurrent ankle sprains in the adolescent, lateral hindfoot pain
 • Exam: rigid subtalar motion
 • Imaging:
 • Calcaneonavicular bar
 • Talocalcaneal coalition
 • Treatment: immobilization always first step
 • Resection/arthrodesis depending on size and location of refractory

Bone / Articular Lesions

• Anterior impingement

 • “Footballer’s ankle”
 • Runners and jumpers
 • Pain, localized anteriorly
 • Limited ROM
 • Xrays: exostosis distal tibia (usually lateral), cupping of talar neck +/- spur
 • Treatment
 • Conservative: ↓ activity
 • Surgery if persistent symptoms and xray evidence of impingement
Metatarsal stress fractures

- "March" fractures
- Military recruits or dancers frequently affected
 - Increase in duration or intensity of exercise
 - 2nd MT involved more commonly than 3rd MT
- Fatigue-type fractures
- Point tenderness over affected metatarsal (not web)
 - Circumscribed swelling over dorsal foot that does not extend to medial or lateral border of foot
- Initial xrays usually negative
- Treatment: hard-soled post-op shoe, cessation of inciting activity
- Recovery variable: usually return to normal shoewear by 6-8wks
 - Shoe modification with orthosis

Navicular Stress Fractures

- Exam:
 - Dorsomedial vague pain, prolonged symptoms
 - Positive percussion test over navicular
 - Limited motion of subtalar joint (50%)
 - Pain generated in navicular area when patient stands on toes
- Often xrays negative:
 - Bone scan sensitive, CT determines fx location and extent, MRI shows early edema
Navicular stress fracture

- Incomplete or nondisplaced fractures:
 - Cast and nonweightbearing for 6 wks
 - Protected WB for 6 wks
 - RTP avg 4 months; +/- orthotic with medial longitudinal arch support
- Operative treatment considered:
 - Complete fractures with sclerosis
 - Displaced fractures
 - High-demand athletes with nondisplaced fractures
 - Quicker RTP (83% healing, RTP 3.6mos vs 5.6mos)
 - Persistent symptoms or failed conservative treatment

Stress fractures

- MRI – most accurate test for suspected lower extremity stress fractures
 - Meta-analysis
 - Radiographs (sensitivity 12-56%)
 - Bone Scans (sensitivity 50-97%)
 - CT scans (sensitivity 32-38%)
 - Ultrasound (sensitivity 43-99%)
 - MRI (sensitivity 68-99%)

Achilles Tendon Rupture

• Dual blood supply
 • Muscles above
 • Bony attachment below
 • Watershed zone
 – 1-4 inches above tendon attachment to heel bone

Achilles Tendon Rupture

• Complete disruption of Achilles tendon
 • Location
 • Often 5-7 cm above insertion to heel bone
 • Commonly affected
 • Middle aged (average age in 40s)
 • Men (M:F ~3:1)
 • “weekend warriors”
Achilles Tendon Rupture

History
- Mechanism of injury
 - Eccentric loading (pushing off)
- Pop
 - “someone hit the back of my ankle”
- Inability or difficulty walking
- Pain behind ankle
- Possible association with
 - Prodromal symptoms
 - Recent fluoroquinolone use
 - Recent steroid use

Examination
- 20-30% delayed diagnosis
- High clinical suspicion
- Thompson Test
- Gap sign
- Loss of resting equinus
Achilles Tendon Rupture

- Examination
 - Thompson Test

Achilles Tendon Rupture

- Examination
Achilles Tendon Rupture

- Imaging – not usually required
 - Xrays
 - May rule out fracture
 - MRI
 - Helpful for delayed presentation or equivocal clinical exam
 - U/S
 - Inexpensive, can confirm diagnosis and localize tear

Achilles Tendon Rupture

- Initial Treatment
 - Immobilize in plantarflexion
 - Keep nonweightbearing with crutches
 - RICE therapy
 - Counsel on signs and symptoms of DVT
Achilles Tendon Rupture

• Treatment
 • Controversial
 • With early diagnosis and immobilization, may achieve similar results
 • Management depends on surgeon and patient preference
 • May favor surgery for athletes, younger patients, and delayed diagnosis with diastasis of tendon ends

• Treatment
 • Nonoperative
 • NOT a passive treatment program
 • Immediate immobilization in plantarflexion
 • Progression to formal Physical Therapy for functional rehab after 2 weeks
 – Transition to boot with 2cm heel lift
 – Progressive return to weightbearing and controlled strengthening
Achilles Tendon Rupture

• Treatment
 ✓ Operative
 • Multiple options
 • Open
 • Limited incision
 • No significant differences confirmed between methods

Heel Pain – Plantar Fasciitis

• Most common cause of plantar heel pain
• Peak age of incidence between 40-60 years
• Risk factors include runners, prolonged standing, obesity, limited dorsiflexion of the ankle
Plantar Fasciitis

• **History**
 - Insidious onset without trauma
 - Typical pain with start up or initiation of weight bearing
 - First thing in the morning or after sitting for periods of time (watching TV, driving, eating)
 - Typically lessened or not symptomatic during activity
 - Often recent increase in activity or change in shoe wear

Plantar Fasciitis

• **Examination**
 - Pain at the medial tubercle of the calcaneus
Plantar Fasciitis

- **Differential**
 - Calcaneal stress fracture
 - Specific onset of symptoms
 - Constant pain
 - Tender on both sides of the heel
 - Worse with weight bearing
 - Present on plain radiographs

![Stress Fracture](image1.png)

- **Differential**
 - Neurogenic (tarsal tunnel, peripheral neuropathy, radiculopathy)
 - Pain may not be specific to the medical calcaneal tuberosity
 - Patients often report burning and tingling pain
 - Tinel's sign
 - Radiating symptoms
 - Lack of focal symptoms to exam
 - Not specific to weight bearing

![Tarsal Tunnel](image2.png)
Plantar Fasciitis

Treatment

- **Non-operative treatment**
 - Majority of patients >90% will improve with non-operative treatment
 - Tissue specific plantar fascia stretching
 - Achilles stretching
 - Heel cups
 - Over the counter orthotics
 - Night splints
 - NSAIDs

Treatment - Nonoperative

- **Injections**
 - Cortisone
 - Platelet rich plasma
 - Limited studies documenting its efficacy
- **Extracorporeal shockwave treatment**
 - High and low energy options
 - Well tolerated
- **Immobilization**
 - Cam boot 2-4 weeks
Plantar Fasciitis

- **Treatment – Surgical**
 - **Recalcitrant cases > 12 months**
 - **Plantar fasciotomy**
 - **Open or endoscopic techniques**
 - **Assess lateral plantar nerve**
 - **Achilles or Gastrocnemius lengthening**

Hallux Valgus - Bunions

- **Common causes**
 - **Extrinsic**
 - Inappropriate shoegear
 - **Intrinsic**
 - Hereditary
 » Incompetent soft tissue restraints
 » Generalized joint hypermobility
 » Predisposing bony anatomy
Hallux Valgus - Bunions

- Conservative Therapy is always the first line
 - Operate on the shoe
 - Pads, Spacers

Bunions

- Surgical Treatment
 - Symptoms that persist despite nonsurgical treatment
 - Factors to consider
 - Existence of arthritis or arthrosis
 - Degree of deformity and passive correctability
 - Patient expectations
 - May potentially discourage surgery in
 - Athletes not willing to potentially give up sports
 - Women wanting to constantly wear high heels with narrow toe boxes
Bunions

- Surgical Treatment
 - Requires Osteotomy (cutting and resetting) or Fusion

<table>
<thead>
<tr>
<th>Minimally Invasive</th>
<th>Traditional</th>
</tr>
</thead>
</table>

[Images of surgical procedures]
Ankle Arthritis

Etiology

- Osteoarthritis is not the most common etiology
 - Trauma
 - Inflammation
 - Infection
 - Instability

Symptoms

- Band of pain and swelling around ankle
- Limited motion (loss of dorsiflexion more common)
- Possible deformity
- Gait disturbance / Limp
Ankle Arthritis

• Xrays
 • Loss of joint space
 • Periarticular osteophytes
 • Subchondral sclerosis and cysts

Ankle Arthritis

• Nonoperative Treatment
 • Activity modification
 • NSAIDs
 • Bracing
 • Rocker bottom shoes
 • Injections
Ankle Arthritis

- Surgical Treatment
 - Arthroscopic/ open debridement
 - Bone and soft tissue impingement
 - Tibial/ calcaneal osteotomy
 - Distraction arthroplasty
 - Allograft replacement
 - Arthrodesis
 - Total ankle replacement

Ankle Arthritis

- Surgical Treatment
 - Tibial osteotomy
Ankle Arthrodesis

- Ideal patient
 - Reasonably mobile
 - Middle-to-old aged patient
 - Normal or low BMI
 - Good bone stock
 - Minimal deformities
 - Multiple joint arthritis
 - Rheumatoid arthritis
 - No neurovascular impairment

Total Ankle Replacement

- Ideal patient
 - Reasonably mobile
 - Middle-to-old aged patient
 - Normal or low BMI
 - Good bone stock
 - Minimal deformities
 - Multiple joint arthritis
 - Rheumatoid arthritis
 - No neurovascular impairment
Summary

- Treatment of foot and ankle conditions can prove quite complicated
 - impact quality of life
 - minor foot and ankle problems can turn into big ones
- We provide comprehensive care responsive to current and long-term patient needs
 - Most problems can be treated effectively without surgery
- Forefront of orthopaedic technology, offering cutting-edge techniques and developing new procedures for difficult problems