Common Foot & Ankle Injuries

Adam T. Groth, MD
Associate Professor
Chief, Division of Foot & Ankle Reconstruction
Jameson Crane Sports Medicine Institute
Department of Orthopaedics
The Ohio State University Wexner Medical Center

Division of Foot and Ankle Reconstruction

- Adam T. Groth, MD
- Kevin P. Martin, DO
- Timothy Miller, MD
- Julie Swain, APRN-CNP
- OSU Podiatry
- OSU Sports Medicine Family Medicine
- OSU PM&R
- OSU Physical Therapy

Acknowledgement

- Professor Emeritus Ian J. Alexander

Disclosures

- None

Foot & Ankle Center of Excellence

- Comprehensive care for all adult foot and ankle problems:
 - Sports injuries / Sprains / Cartilage disorders
 - Arthritis / Degenerative conditions
 - Deformities
 - Trauma / Fractures
 - Bunions / Hammertoes
 - Whatever is causing your pain
Common Problems of the Foot & Ankle

- Acute ankle sprains
 - Late pain after ankle sprains / associated injuries
- Stress fractures
- Achilles tendon ruptures
- Plantar fasciitis
- Bunions
- Ankle arthritis

Acute Ankle Sprain

- Exceedingly common
 - 10-40% of civilian athletic injuries annually
 - Significant time lost to injury
- 1 inversion event per 10,000 people per day
 - 23,000 to 30,000 ankle injuries per day in U.S.
 - 10% or ER visits in U.S.
- 45% of all basketball injuries
- 31% of collegiate football injuries
- 20% of soccer injuries
- Leading cause of time loss in NFL
- Most common cause of acute injury in volleyball

The Ankle Sprain

- Mainstay of treatment is functional rehabilitation
 - 80% make a full recovery with conservative treatment
- 20-30% may be symptomatic 3 months after surgery
- Associated injuries may result in continued pain and dysfunction
- Repeat sprains or inadequate rehabilitation may result in chronic lateral instability in 20%

Anatomy and Biomechanics

Calcaneofibular (CFL)
Anterior Talofibular (ATFL)
Mechanism

- Position of instability: plantarflexion and inversion
 - Talus is more narrow posteriorly
- Failure occurs in predictable order
 - Anterolateral capsule
 - ATFL (involved in 85%)
 - Restraint to inversion in PF
 - CFL (also injured in 20-40%)
 - Restraint to inversion in neutral or dorsiflexion
 - PTFL rarely injured

Diagnosis

- History of injury
 - Mechanism of injury
 - Forces involved
 - Direction of foot deviation
 - Prior episodes and frequency
 - Immediate ability to weight bear

Examination of the Foot & Ankle

- Examination
 - Be systematic (knee to toe)
 - Inspection / gait
 - Ecchymosis and swelling
 - Localize tenderness
 - Soft tissue vs bony
 - Ambulatory capacity
 - Neurovascular exam
 - Range of motion

Examination of the Foot & Ankle

- Examination – special tests
 - Anterior drawer
 - Squeeze test
 - External rotation stress test
Anterior Drawer

- Allow the leg to hang freely with foot plantarflexed 25°
- Stabilize the tibia with 1 hand and grasp the heel with the other.
- Pull foot anteriorly, allowing it to rotate internally (around the deltoid) as it translates.
- Incompetent ATFL => Excessive anterior translation relative to other side
 * Acute laxity does not correlate with development of late symptoms = does not always require surgery

Are RADIOGRAPHS indicated?

- Ottawa rules
- **ANKLE X-rays**
 - Posterior tenderness distal 6 cm of tibia or fibula
 - Malleolar tip tenderness
 - Both immediate inability to WB and not able to walk more than 4 steps in ED

Are RADIOGRAPHS indicated?

- Ottawa rules
- **FOOT X-rays**
 - Navicular tenderness
 - 5th metatarsal base tenderness
 - Both immediate inability to WB and not able to walk more than 4 steps in ED

MRI

- Not required in the ACUTE setting
- Considered for the patient with chronic pain (>6 weeks) after ankle sprain
 - Useful for assessing concomitant pathology
 - 90% accuracy for ATFL and CFL tears
- Does not give an absolute indication for surgery
Clinical Classification

- Mild Sprain
 - Able to walk without limp
 - Minimal swelling or point tenderness
 - Pain with reproduction of mechanism of injury
- Moderate Sprain
 - Walking with a limp
 - Localized swelling with point tenderness
 - Unable to rise on toes or hop on injured ankle
- Severe Sprain
 - Prefers crutches and has difficulty bearing weight
 - Diffuse tenderness and swelling

<table>
<thead>
<tr>
<th>Grade I</th>
<th>Grade II</th>
<th>Grade III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edema, ecchymosis</td>
<td>Localized, slight</td>
<td>Localized, moderate</td>
</tr>
<tr>
<td>Weight bearing</td>
<td>Full or partial without significant pain</td>
<td>Difficult without crutches</td>
</tr>
<tr>
<td>Ligament pathology</td>
<td>Ligament stretch</td>
<td>Partial tear (ATFL)</td>
</tr>
<tr>
<td>Instability testing (anterior drawer)</td>
<td>None</td>
<td>None or slight</td>
</tr>
<tr>
<td>Time to return to sport</td>
<td>11 days</td>
<td>2-6 weeks</td>
</tr>
</tbody>
</table>

- Mainstay of treatment is nonoperative management, even in the athletic population

Treatment – Acute Ankle Sprain

- P.R.I.C.E
 - Protection
 - Rest
 - Ice
 - Compression
 - Elevation
- Progressive weightbearing as tolerated
- Early range of motion
- Physical Therapy – functional ankle rehabilitation
Treatment – Acute Ankle Sprain

- **Bracing**
 - Protection from inversion to prevent weaker type III collagen \rightarrow elongation
 - 3 weeks \rightarrow collagen starts to mature, controlled stress on the ligament promotes proper collagen orientation
- **Functional Rehabilitation**
 - Ankle motion, stretching and strengthening will avoid harmful effects of immobilization on muscle, joint cartilage, and bone
 - Full return to activities between 4-8 weeks

The Ankle Sprain

- **Functional Rehabilitation**
 - Achieve full ROM
 - Peroneal tendon strengthening and proprioception
 - Gradual progression of weightbearing and return to play
 - Supervised PT has better outcome with regard to strength and proprioception in the short term
 - Reinjury rates and long term functional results similar to home therapy plans

The Ankle Sprain

- **Grade I and II** \rightarrow good to excellent
- **Grade III** \rightarrow a little more controversial

Treatment – Acute Ankle Sprain

- **Bracing**
 - Semi-rigid ankle support: shorter time to return to work & sport, less symptomatic instability at short-term follow-up

- Grade 1 & 2
- Grade 3
Acute Sprain → Chronic Instability

- 10-20% risk after ankle sprain
- Two types
 - Mechanical
 - Abnormal clinical laxity
 - Pathologic hypermobility of the tibiotalar joint
 - Functional
 - Subjective instability
 - Unreliable ankle, no demonstrable radiographic signs of instability
 - Symptom

Operative Indications for Lateral Ankle Reconstruction

- Continued pain and instability despite extensive non-operative management
 - Must rule out and/or treat other pathology

Surgical Management of Lateral Ankle Instability

- Anatomic reconstruction
 - Modified Brostrom lateral ligament reconstruction
 - Allograft lateral ligament reconstruction

Return to Play after Lateral Ligament Reconstruction

- Outcomes of athletes after Brostrom
 - 58% returned to preinjury level
 - 16% competing at a lower level
 - 26% discontinued sport but still active
 - (Maffulli et al, AJSM 2013)
Rehab and Recovery after Reconstruction

- **Phase I** – ROM
- **Phase II** – Endurance
- **Phase III** – Strength
- **Phase IV** – Power
- **Phase V** – Return to Sport Testing and Physician Clearance
 - Achieve 90% of contralateral limb strength

Clinically significant late pain after ankle sprain

- Clinically significant pain >6 weeks after injury without recurrent injury or instability
 - Consider pathology that may be in conjunction with an ankle sprain or consider a different diagnosis
 - Soft tissue lesions
 - Bone / articular lesions

Soft Tissue Lesions

- **Anterolateral soft tissue impingement**
 - **Complaint**: focal anterolateral pain, worse with dorsiflexion and cutting maneuvers
 - **Exam**: focal anterolateral ankle tenderness
 - **Treatment**: steroid injection; arthroscopic debridement

Soft Tissue Lesions

- **Peroneal tendon tear**
 - **Complaint**: focal lateral pain, worse with eversion
 - **Exam**: swelling, focal lateral tenderness, pain with eversion
Soft Tissue Lesions

- **Peroneal tendon tear**
 - **Treatment**: NSAID/immobilization, lateral heel wedge, surgical debridement or repair if no response

Soft Tissue Lesions

- **Peroneal tendon subluxation**
 - **Complaint**: pain and snapping of tendons over fibula
 - **Exam**: swelling, focal ttp posterior to distal fibula, dislocation of tendons with resisted eversion

Soft Tissue Lesions

- **Peroneal tendon subluxation**
 - **Treatment**: fibular groove deepening and retinacular reconstruction

Soft Tissue Lesions

- **Sinus tarsi syndrome**
 - **Complaint**: pain and swelling lateral hindfoot, exacerbated on uneven surfaces
 - **Exam**: swelling, focal ttp anterior to distal fibula
 - **Treatment**: NSAID/immobilization, steroid injection, arthroscopic debridement
Syndesmotic Injury – High Ankle Sprain

- Collision sports, 10% of all ankle sprains
- Mechanism: external rotation
 - Direct force posterior calf of downed player with foot externally rotated
 - External rotation force on knee while foot firmly planted

Soft Tissue Lesions

- **Syndesmotic injury**
 - **Complaint:** pain in distal leg and ankle with cutting/twisting
 - **Exam:** external rotation stress test; squeeze test
 - **Xrays/MRI/US:**
 - Stress x-rays: disruption or widening of syndesmosis

Syndesmotic injury - Treatment

- Grade I and II:
 - RICE, PT, ankle brace or taping
- Grade III:
 - Acute- ORIF (screws/Tightrope)
 - Chronic- arthroscopic debridement + fixation
 - Longer time to return to play and more residual symptoms than simple ankle sprain

Soft Tissue Lesions

- **Superficial peroneal neuropathia** – intermediate branch
 - **Complaint:** anterolateral pain / burning / numbness
 - **Exam:** focal ttp, + ttns, decreased sensation dorsolateral foot
 - **Treatment:** neurontin / lidoderm patch / desensitization
 - Neurolysis vs. transection
Bone / Articular Lesions

- Juxta-articular fractures
 - **Complaint:** pain swelling in the area of the fx
 - **Exam:** focal ttp, pain with provocative maneuvers
 - **Imaging:** often apparent on xray but must look closely
 - Bone scan: hot locally
 - CT scan: define fragment size and articular involvement to define surgical plan
 - **Treatment:** immobilization in cast or boot 4-6weeks
 - Excision vs. ORIF if large articular fragments

Bone / Articular Lesions

- Juxta-articular fracture
 - Anterior process of the calcaneus

Bone / Articular Lesions

- Juxta-articular fracture
 - Posterior talar process (Stieda process)

Bone / Articular Lesions

- Juxta-articular fracture
 - Lateral talar process
Bone / Articular Lesions

- Juxta-articular fracture
 - Dorsal navicular rim avulsion
- Distal fibular avulsion
- Cuboid avulsion

Bone / Articular Lesions

- Osteochondral lesion of the talus (OLT)
 - Complaint: swelling, sharp pain/aching deep in joint, occasional mechanical locking/catching
 - Exam: focal ttp @medial / lateral shoulder of talus
 - Imaging: xray may show cyst in chronic OLTs, CT/MRI is diagnostic
 - Sometimes an incidental finding
 - If not symptomatic does not require treatment

Bone / Articular Lesions

- Osteochondral lesion of the talus (OLT)
 - Non-operative management
 - Non displaced acute lesions
 - Immobilization x 6 weeks
 - Operative Management:
 - Failed conservative care, large and/or displaced fragments

Bone / Articular Lesions

- Osteochondral lesion of the talus (OLT)
 - Surgical Treatment:
 - Mesenchymal cell stimulation
 - Microfracture, abrasion chondroplasty
 - Autograft osteochondral transfer
 - Allograft osteochondral transfer
 - Allograft chondral transfer
 - Autologous chondrocyte implantation (ACI)
 - Juvenile particulated allograft cartilage
 - Biocartilage
Bone / Articular Lesions

- 5th metatarsal fractures
- Poor blood supply to zone 2
- Clinically assess for:
 - Area(s) of tenderness
 - Cavovarus foot posture
 - Chronicity of fracture (sclerosis or periosteal reaction)

Zones:
1= tuberosity avulsion fractures (may enter 5th MT-cuboid articulation)
2= Jones fractures (metaphyseal-diaphyseal junction)
3= stress fractures (distal to 4/5 IM ligaments, extends distally into diaphysis for 1.5cm)

Zone1- 5th MT tuberosity avulsion fractures
- Treatment usually hard-soled shoe or boot
- 4 wks usually patients asymptomatic
- Time to healing approximately 8 wks
 - Symptomatic nonunion- excise fragment

Jones Fracture
5th Metatarsal Jones fracture

- **Non-displaced fractures:** Non-weightbearing cast or boot 6-8 wks
- Consider surgery if:
 - Displaced fracture
 - Athlete
 - Quill 1995: 25-50% of fractures treated closed found not to heal or to re-fracture
- **Delayed union or nonunion:**
 - Return to play @8-10 wks post ORIF if radiographically healed fracture

Bone / Articular Lesions

- **Tarsal coalition**
 - **Complaint:** recurrent ankle sprains in the adolescent, lateral hindfoot pain
 - **Exam:** rigid subtalar motion
 - **Imaging:**
 - Calcaneonavicular bar
 - Talocalcaneal coalition
 - **Treatment:** immobilization always first step
 - Resection/arthrodesis depending on size and location of refractory

Jones fracture

Bone / Articular Lesions

- **Anterior impingement**
 - "Footballer’s ankle"
 - Runners and jumpers
 - Pain, localized anteriorly
 - Limited ROM
 - Xrays: exostosis distal tibia (usually lateral), cupping of talar neck +/- spur
 - **Treatment**
 - Conservative: ↓ activity
 - Surgery if persistent symptoms and xray evidence of impingement
Metatarsal stress fractures

- "March" fractures
- Military recruits or dancers frequently affected
 - Increase in duration or intensity of exercise
 - 2nd MT involved more commonly than 3rd MT
- Fatigue-type fractures
- Point tenderness over affected metatarsal (not web)
 - Circumscribed swelling over dorsal foot that does not extend to medial or lateral border of foot
- Initial xrays usually negative
- Treatment: hard-soled post-op shoe, cessation of inciting activity
- Recovery variable: usually return to normal shoewear by 6-8wks
 - Shoe modification with orthosis

Navicular stress fracture

- Incomplete or nondisplaced fractures:
 - Cast and nonweightbearing for 6 wks
 - Protected WB for 6 wks
 - RTP avg 4 months; +/- orthotic with medial longitudinal arch support
- Operative treatment considered:
 - Complete fractures with sclerosis
 - Displaced fractures
 - High-demand athletes with nondisplaced fractures
 - Quicker RTP (83% healing, RTP 3.6mos vs 5.6mos)
 - Persistent symptoms or failed conservative treatment

Navicular Stress Fractures

- Exam:
 - Dorsomedial vague pain, prolonged symptoms
 - Positive percussion test over navicular
 - Limited motion of subtalar joint (50%)
 - Pain generated in navicular area when patient stands on toes
- Often xrays negative:
 - Bone scan sensitive, CT determines fx location and extent, MRI shows early edema

Stress fractures

- MRI – most accurate test for suspected lower extremity stress fractures
- Meta-analysis
 - Radiographs (sensitivity 12-56%)
 - Bone Scans (sensitivity 50-97%)
 - CT scans (sensitivity 32-38%)
 - Ultrasound (sensitivity 43-99%)
 - MRI (sensitivity 68-99%)

Achilles Tendon Rupture

- Dual blood supply
 - Muscles above
 - Bony attachment below
 - Watershed zone
 - 1-4 inches above tendon attachment to heel bone

- Complete disruption of Achilles tendon
 - Location
 - Often 5-7 cm above insertion to heel bone
 - Commonly affected
 - Middle aged (average age in 40s)
 - Men (M:F ~3:1)
 - “weekend warriors”

Achilles Tendon Rupture

- History
 - Mechanism of injury
 - Eccentric loading (pushing off)
 - Pop
 - “someone hit the back of my ankle”
 - Inability or difficulty walking
 - Pain behind ankle
 - Possible association with
 - Prodromal symptoms
 - Recent fluoroquinolone use
 - Recent steroid use

- Examination
 - 20-30% delayed diagnosis
 - High clinical suspicion
 - Thompson Test
 - Gap sign
 - Loss of resting equinus
Achilles Tendon Rupture

- Examination
 - Thompson Test

- Imaging – not usually required
 - Xrays
 - May rule out fracture
 - MRI
 - Helpful for delayed presentation or equivocal clinical exam
 - U/S
 - Inexpensive, can confirm diagnosis and localize tear

Achilles Tendon Rupture

- Initial Treatment
 - Immobilize in plantarflexion
 - Keep nonweightbearing with crutches
 - RICE therapy
 - Counsel on signs and symptoms of DVT
Achilles Tendon Rupture

- Treatment
 - Controversial
 - With early diagnosis and immobilization, may achieve similar results
 - Management depends on surgeon and patient preference
 - May favor surgery for athletes, younger patients, and delayed diagnosis with diastasis of tendon ends

- Operative
 - Multiple options
 - Limited incision
 - No significant differences confirmed between methods

Achilles Tendon Rupture

- Treatment
 - Nonoperative
 - NOT a passive treatment program
 - Immediate immobilization in plantarflexion
 - Progression to formal Physical Therapy for functional rehab after 2 weeks
 - Transition to boot with 2cm heel lift
 - Progressive return to weightbearing and controlled strengthening

Heel Pain – Plantar Fasciitis

- Most common cause of plantar heel pain
- Peak age of incidence between 40-60 years
- Risk factors include runners, prolonged standing, obesity, limited dorsiflexion of the ankle
Plantar Fasciitis

History
- Insidious onset without trauma
- Typical pain with start up or initiation of weight bearing
- First thing in the morning or after sitting for periods of time (watching TV, driving, eating)
- Typically lessened or not symptomatic during activity
- Often recent increase in activity or change in shoe wear

Examination
- Pain at the medial tubercle of the calcaneus

Plantar Fasciitis

Differential
- Calcaneal stress fracture
 - Specific onset of symptoms
 - Constant pain
 - Tender on both sides of the heel
 - Worse with weight bearing
 - Present on plain radiographs

- Neurogenic (tarsal tunnel, peripheral neuropathy, radiculopathy)
 - Pain may not be specific to the medical calcaneal tuberosity
 - Patients often report burning and tingling pain
 - Tinel’s sign
 - Radiating symptoms
 - Lack of focal symptoms to exam
 - Not specific to weight bearing
Plantar Fasciitis

- **Treatment**
 - Non-operative treatment
 - Majority of patients >90% will improve with non-operative treatment
 - Tissue specific plantar fascia stretching
 - Achilles stretching
 - Heel cups
 - Over the counter orthotics
 - Night splints
 - NSAIDs

- **Treatment – Surgical**
 - Recalcitrant cases > 12 months
 - Plantar fasciotomy
 - Open or endoscopic techniques
 - Assess lateral plantar nerve
 - Achilles or Gastrocnemius lengthening

Plantar Fasciitis

- **Treatment - Nonoperative**
 - Injections
 - Cortisone
 - Platelet rich plasma
 - Limited studies documenting its efficacy
 - Extracorporeal shockwave treatment
 - High and low energy options
 - Well tolerated
 - Immobilization
 - Cam boot 2-4 weeks

Hallux Valgus - Bunions

- **Common causes**
 - Extrinsic
 - Inappropriate shoegear
 - Intrinsic
 - Hereditary
 - Incompetent soft tissue restraints
 - Generalized joint hypermobility
 - Predisposing bony anatomy
Hallux Valgus - Bunions

- Conservative Therapy is always the first line
 - Operate on the shoe
 - Pads, Spacers

Bunions

- Surgical Treatment
 - Symptoms that persist despite nonsurgical treatment
 - Factors to consider
 - Existence of arthritis or arthrosis
 - Degree of deformity and passive correctability
 - Patient expectations
 - May potentially discourage surgery in
 - Athletes not willing to potentially give up sports
 - Women wanting to constantly wear high heels with narrow toe boxes

Bunions

- Surgical Treatment
 - Requires Osteotomy (cutting and resetting) or Fusion

- Minimally Invasive

- Traditional
Ankle Arthritis

- **Etiology**
 - Osteoarthritis is not the most common etiology
 - Trauma
 - Inflammation
 - Infection
 - Instability

- **Symptoms**
 - Band of pain and swelling around ankle
 - Limited motion (loss of dorsiflexion more common)
 - Possible deformity
 - Gait disturbance / Limp

- **Xrays**
 - Loss of joint space
 - Periarticular osteophytes
 - Subchondral sclerosis and cysts

- **Nonoperative Treatment**
 - Activity modification
 - NSAIDs
 - Bracing
 - Rocker bottom shoes
 - Injections
Ankle Arthritis

• Surgical Treatment
 • Arthroscopic/ open debridement
 • Bone and soft tissue impingement
 • Tibial/ calcaneal osteotomy
 • Distraction arthroplasty
 • Allograft replacement
 • Arthrodesis
 • Total ankle replacement

Ankle Arthrodesis

Total Ankle Replacement

• Ideal patient
 • Reasonably mobile
 • Middle-to-old aged patient
 • Normal or low BMI
 • Good bone stock
 • Minimal deformities
 • Multiple joint arthritis
 • Rheumatoid arthritis
 • No neurovascular impairment

Ankle Arthritis

• Surgical Treatment
 • Tibial osteotomy
Treatment of foot and ankle conditions can prove quite complicated
 - impact quality of life
 - minor foot and ankle problems can turn into big ones
- We provide comprehensive care responsive to current and long-term patient needs
 - Most problems can be treated effectively without surgery
- Forefront of orthopaedic technology, offering cutting-edge techniques and developing new procedures for difficult problems

Summary