An Update on Multiple Sclerosis

Benjamin M. Segal, M.D.
Chair, Department of Neurology
Director, Neuroscience Research Institute
Co-Director, Neurological Institute
The Ohio State University Wexner Medical Center

Multiple Sclerosis: Basic Facts

- An inflammatory demyelinating disease of the CNS. In its most common form (relapsing remitting MS; 85%), lesions/clinical attacks are disseminated in time and space. Primary progressive MS (PPMS; 15%) is characterized by the gradual accumulation of disability from the time of initial clinical presentation.

- MS is the most common cause of non-traumatic neurological disability among young adults in the Western Hemisphere

- RRMS typically presents in young adulthood (20’s-30’s) with a female: male ratio of approximately 2-3:1
 PPMS typically presents in early middle age (40’s-50’s) with a female: male ratio of approximately 1:1
Epidemiology

- There are more than 2.3 million individuals with MS worldwide. However, this number is likely an underestimate. Several studies indicate that the incidence of MS has been increasing at a significant rate, particularly among women and that MS is more common among African and Hispanic Americans than previously appreciated.

- The prevalence of MS has been rising in North America over the past 5 decades. In the most recent large scale study in the United States, the authors estimated the prevalence of MS to range from 851,749 - 913,925 persons.

 Neurology 2019;92(10):e1029

- MS tends to be more prevalent with increasing distance from the Equator. High incidence areas include Scandinavia, the northern UK, Canada and the northern United States.

2010 prevalence of MS in the United States per 100,000 population

- **West**
 - 272.7 per 100,000
 - (95% CI: 271.0-274.4)
 - F:M ratio = 2.8

- **Midwest**
 - 353.1 per 100,000
 - (95% CI: 351.1-355.2)
 - F:M ratio = 3.0

- **Northeast**
 - 377.4 per 100,000
 - (95% CI: 375.2-379.7)
 - F:M ratio = 2.8

- **South**
 - 272.6 per 100,000
 - (95% CI: 271.2-273.0)
 - F:M ratio = 2.7

Neurology 2019;92(10): e1029-e1040
Risk Factors

Genetic
- 1st degree relatives are at increased risk
 (2-4% versus 0.1-0.3% in general population)
- Approximately 20-30% of monozygotic twins of individuals with MS will eventually be diagnosed with the disease
- Over 200 MS genetic susceptibility loci have been identified, each of which contributes a small amount to overall risk. Strongest association is with genes in the MHC Class II region.

Environmental
- Geographic (Northern to Southern gradient in US and Europe). Migration studies demonstrate that risk is dependent on residence prior to adolescence.
- Low serum Vitamin D levels; low cumulative sun light exposure
- Exposure to Epstein Barr Virus as an adult
- Smoking is associated with a worse clinical course and, possibly to increased susceptibility
The MS “Prodrome”

- In the years leading up to MS diagnosis, patients have increased symptoms leading to increased health care visits. These symptoms are variable and do not suggest focal neurological deficits.

- The year before the first clinical episode of inflammatory demyelination there is a 78% increase in the rate of hospitalizations, an 88% increase in the rate of physician service use, and a 49% increase in the number of prescriptions filled.

- The symptoms/diagnoses associated with increased health care visits include headache, fibromyalgia, urological complaints, irritable bowel syndrome, anxiety, depression and fatigue. There is an approximately 50% increase in psychiatrist or general physician visits for mental health issues in the 5 years prior to MS onset.

- Cognitive decline is measurable 2 years before MS symptom onset.

- A similar prodromal period has been described in other autoimmune disease such as rheumatoid arthritis and inflammatory bowel disease.

Multiple Sclerosis lesions can form at any site within the Central Nervous System
<table>
<thead>
<tr>
<th>Common Ways that MS Presents: Multiple Sclerosis: Depend on lesion location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optic Neuritis (Optic Nerves)</td>
</tr>
<tr>
<td>Transverse Myelitis (Spinal cord)</td>
</tr>
<tr>
<td>Posterior Fossa Syndrome (Brainstem/cerebellum)</td>
</tr>
<tr>
<td>Other clinical manifestations</td>
</tr>
</tbody>
</table>

Eponymous Syndromes of MS

Uhthoff’s Phenomenon:
Symptoms tend to resurface or get worse when body temperature rises
Magnetic Resonance Imaging (MRI) findings in MS

The majority of lesions are asymptomatic

Lesions:
“Dawson’s Fingers”

CSF Oligoclonal Bands
(must be absent in serum)
Visual Evoked Potentials

- **Normal**
 - P100 wave latency: 107 msec
- **Abnormal**
 - P100 wave latency: 134 msec

Accuracy of Referrals

<table>
<thead>
<tr>
<th>Institution</th>
<th>% with final dx of MS/ CIS</th>
<th>Alternative Diagnoses</th>
<th>Referral Source</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Vincent’s Hospital, Dublin, Ireland</td>
<td>49% (119/244)</td>
<td>neuropathy, migraine with aura, myelopathy, focal seizure disorders. Also CADASIL, neuro-bechet’s</td>
<td>“Majority of referrals were from general practitioners”</td>
<td>Mult Scler. 2011 Aug;17(8):1017-21</td>
</tr>
<tr>
<td>American University of Beirut Medical Center, Lebanon and Amiri Hospitals Kuwait</td>
<td>70% (300/431)</td>
<td>Psychogenic, non-specific MRI white matter lesions, NMO, systemic autoimmune disorders</td>
<td>Approximately 50% of referrals from neurologists</td>
<td>Mult Scler Relat Disord. 2017 Nov;18:85-89</td>
</tr>
<tr>
<td>University of Colorado, USA</td>
<td>33% (93/281)</td>
<td>Migraine, stroke, neuropathy, transverse myelitis, cervical stenosis, ADEM, possible psychiatric disease, unclear dx</td>
<td>64% primary care physicians, 25% neurologists, 11% other physicians</td>
<td>Arch Neurol. 2005 Apr;62(4):585-90</td>
</tr>
</tbody>
</table>
Alternative Diagnoses

Clinical Features of Relapsing Remitting Multiple Sclerosis

Dissemination in Time and Space; Discrete and diverse episodes of neurological function

Kinetics and Duration of Exacerbations
- Symptoms reach peak intensity over days to weeks. Exacerbations tend to be followed by full (particularly early in the course) or partial recovery.
- Episodes typically last 3 months or less (meaning the full extent of recovery is realized within that time frame). Though patients can continue to improve over a 9 month time frame.

Heterogeneity of Exacerbations
- Symptoms often vary from 1 exacerbation to the next, though the same symptom can recur multiple times during the clinical course.

Chronic Sx
- The most common symptoms of MS is fatigue which, unlike the symptoms that occur during relapses, is chronic. Fatigue does not correlate with lesion burden or location. Subtle cognitive changes can arise even early in the course (difficulty with attention, multi-tasking, processing speed)
Clinical Features of Progressive Multiple Sclerosis

- Gradual accumulation of disability (not stable residual deficits following an exacerbation)
- Commons symptoms in progressive MS are increasing weakness and spasticity of a limb or multiple limbs (ex. both legs), worsening numbness or paresthesias of the extremities, and/or gait imbalance. Dementia can also occur.
- These slow worsening symptoms can plateau during different time periods, but they do not remit
- Acute declines can occur in the setting of infection (manifestation of Uhthoff’s). However, on occasion progressive patients can experience bonafide exacerbations superimposed on the gradual decline

Elements of the History

- **Demographics** age, sex, ethnicity
- **Presenting episode** symptoms and signs, kinetics, duration, extent of recovery
- **Subsequent relapses** symptoms and signs, kinetics, duration, extent of recovery
- **Chronic Sx** fatigue, cognitive impairment, bladder/bowel/sexual dysfunction/neuropathic pain, spasms/spasticity, gait disorders, Uhthoff’s phenomenon, L’hermitte’s, MS “hug”
- **Progressive Sx** gradual accumulation of disability
- **Paroxysmal symptoms** sudden onset, transient, repetitive (ex. dystonia/trigeminal neuralgia)
- **Family hx** 2-5% of 1st degree relatives also have MS; increased incidence of psoriasis, thyroiditis, IBD
- **Environmental Risk Factors** viral infections in relation to exacerbation/infectious mononucleosis; sun exposure/vitamin D supplementation; cigarette smoking
- **Co-morbidities** diabetes, cardiovascular disease, rheumatological disease, depression
- **Screening for entities in Differential dx** sarcoidosis (chronic cough, uveitis, rashes/bumps), lupus/connective tissue disease (joint pains/swelling, malar rash; kidney failure); Lyme’s disease (tick exposure, target rash, joint aches)
Classical Physical Exam Findings in MS

Optic disc pallor temporally, right eye.

Left eye normal
Right afferent pupillary defect

Internuclear Ophthalmoplegia
Sensory Level Secondary Spinal Cord Lesion

KEY
- Lesion
- Sensory/Motor Loss
- Vibration and proprioception loss
- Pain and temperature sense loss
- Motor loss

Sensory Structures
- Lateral column
- Posterior column
- Anterior column
- Ventricle

Proprioception
- If patient cannot detect small amplitude movements, or makes errors, increase the amplitude of movement
- If patient cannot detect larger amplitude movements, test proprioception at a more proximal joint (see next slide)

Vibratory Sense
- 128 or 256 Hz tuning fork
- If impaired, proceed proximally

Spastic Gait

Ataxia
Neuropathological Features of MS

Perivascular infiltrates

Demyelination

Axonopathy

Demyelination and Inflammation in the Spinal Cord

MBP DAPI

DAPI CTB-Tracer
Evidence supporting an autoimmune etiology of MS

- There is abnormal neuroinflammation in the absence of overt infection or tumor
- CD4+ and CD8+ T cells and activated macrophages, dendritic cells and microglia are prominent constituents of perivascular infiltrates
- MHC Class II genes are associated with susceptibility, implicating a functional role of CD4+ T cells. GWAS studies demonstrate that MS clusters with other autoimmune diseases.
- Oligoclonal bands (monoclonal antibodies) are present in the CSF of most MS patients
- An inflammatory demyelinating disease of the CNS can be induced in laboratory animals via active immunization with myelin proteins/peptides or by the adoptive transfer of myelin-reactive CD4+ T cells. This animal model, referred to as experimental autoimmune encephalomyelitis (EAE), has clinical and histopathological similarities with MS.
- Lymphocyte targeting agents (alemtuzumab, rituximab/ocrelizumab, fingolimod/siponimod) suppress relapses and new lesion formation

Sustained myelin-reactive IFNγ- or IL-17- skewed immune responses in MS
“T CELL- CENTRIC” MODEL OF MS PATHOGENESIS

Neurodegenerative Aspects of MS:
Cortical Lesions occur in MS but are not visible on conventional MRI
Disease Modifying Therapies in MS

- There are currently over 15 DMTs that are FDA approved for the treatment of relapsing or “active” forms of MS
- These drugs significantly reduce the annualized relapse rate (ranging from 25 to 80% or higher) and the frequency of gadolinium enhancing or new T2 white matter lesions
- Many have been shown to slow disability accumulation, cognitive decline and rates of cerebral atrophy
- The introduction of DMT has represented a major advance in the treatment of individuals with RRMS and has had a profound impact by mitigating morbidity and enhancing quality of life.
- However, each of these drugs has a unique side effect profile. Rare serious infections can occur, with individual drugs increasing the risk for specific infections. The higher efficacy agents tend to impose greater risks.

Evolving relapsing MS treatment landscape

Adapted from Wingerchuk DM, Weinshenker BG. BMJ 2016;354:13518
Overview of RRMS DMTs

Burden of Treatment (side effects, safety, monitoring)

Challenges

None are cures.

There is a paucity of effective treatments for PMS

New generation DMT in RRMS are designed to target lymphocytes

- **Natalizumab (Tysabri™)** is a monoclonal antibody against α4 integrin that blocks lymphocyte trafficking across the blood-brain-barrier

- **Fingolimod (Gilenya™), Siponimod (Mayzent™), and Ozanimod (Zeposia™)** are sphingosine-1-phosphate receptor modulators that inhibit the egress of lymphocytes from lymph nodes to the circulation, thereby curtailing their migration to the CNS

- **Alemtuzumab (Lemtrada™)** is a monoclonal antibody against CD52 that depletes lymphocytes

- **Ocrelizumab (Ocrevus™), Rituximab, and Ofatumamab** are monoclonal antibodies that deplete B cells

- **Cladribine (Mavenclad™)** is a purine analog and global immunosuppressant
Two general approaches to disease modification in MS

Escalation approach
- Initiate therapy with a safe medication, albeit with modest efficacy
- Escalate to more efficacious therapies based on presence of on-going disease activity
- Minimizes risk overall by limiting exposure to medications with greater risk to cases where disease characteristics warrant it

Early high-efficacy approach
- Initiate therapy with or switch early to one of the high efficacy medications
- To minimize risk, based on demographics, comorbidities, other risk factors, special circumstances
 - Select the specific high efficacy medication
 - Identify selected patients for whom a lower efficacy agent is more appropriate
- Maximizes exposure to potent anti-inflammatory effects early in the disease when it is most likely to be beneficial

Adapted from J. Cohen, Cleveland Clinic

Initial DMT and rate of conversion to SPMS

- Propensity matched cohort of 1555 patients RRMS at 68 centers commencing DMT or monitoring 1988-2012 with 4-yrs followup
- Lower risk of SPMS in patients treated initially with fingolimod, alemtuzumab, or natalizumab vs IFN/GA HR=0.66

Brown JWL et al. JAMA 2019;321:175-187
DMT side effect profiles

- IFNβ- injection site reactions, flu-like SX, depression, elevated LFTs
- Glatiramer Acetate- injection site reactions, lipoatrophy
- Teriflunomide- hepatotoxicity, teratogenicity
- Dimethylfumarate- flushing, GI upset, PML (very rare)
- Fingolimod, siponimod, ozanimod- Atrioventricular conduction slowing, macular edema, herpes infections, cryptococcal meningitis, atypical mycobacteria, PML (very rare)
- Cladribine- herpes zoster, ?malignancy
- Natalizumab- PML
- Alemtuzumab- Autoantibody mediated diseases (Grave’s, ITP, anti-GBM), cervicocephalic arterial dissection/ stroke, Listeria meningitis, herpes infections, fungal infection, ?malignancy
- Ocrelizumab, rituximab- Hepatitis B reactivation

Increased risk of serious infection with MS DMTs

- 6421 patients with RRMS in Swedish registry initiating DMT Jan 1 2011 – Dec 31 2017
- Crude rate of infections:
 General population 5.2
 IFN/GA 8.9
 Natalizumab 11.4
 Fingolimod 14.3
 Rituximab 19.7
- After confounder adjustment, the rate was higher for rituximab vs IFN/GA (HR=1.70) but not for natalizumab or fingolimod
DMT for progressive MS

Oratorio
- Tx: Ocrelizumab
- Primary Endpoint: 12-Week Confirmed Disability Worsening
- Subjects: PPMS (< 50 y.o.; + OCBs)

EXPAND
- Tx: Siponimod
- Primary Endpoint: 6 month Confirmed Disability Worsening
- Subjects: SPMS (mean age 48, mean time since conversion- 3.9 y)

Both studies indicate that patients with progressive MS who are younger, with shorter disease duration, and signs of active inflammatory activity (superimposed relapses, gad enhancing lesions) are more likely to benefit.

Symptomatic Management of MS

- **Fatigue** - Rule out sleep disorders
- **Cognitive deficits** - Neuropsychological assessment; cognitive rehabilitation therapy
- **Paroxysmal Sx** (vertigo, ataxia, dystonia)
- **Pain**
- **Urinary urgency/ retention**
- **Spasticity**
- **Mood disorders**
- **Gait imbalance**
Take Home Messages

- MS is a heterogeneous disease with neuroinflammatory and neurodegenerative components. It is the most common cause of non-traumatic CNS disability among young adults in the Western hemisphere. Recent epidemiological studies show that the prevalence of MS in the United States is higher than previously appreciated.

- Disease modifying therapies (DMT) are effective in suppressing MS relapses and new inflammatory lesion formation. Individual DMTs vary in efficacy and side effect profiles. A growing body of evidence indicates that early initiation of higher efficacy DMT may slow disability accumulation and conversion to progressive MS.

- High efficacy DMTs also slow disability accumulation in some individuals with progressive forms of MS (particularly those who are younger and have evidence of ongoing inflammatory activity). However, the effects are modest. There is a dire need for more effective treatments in progressive MS.

- There does not appear to be an increased risk of contracting COVID19 among individuals with MS, including those on DMT. Preliminary studies suggest that IFNβ might decrease, while rituximab might increase, the likelihood of severe complications from COVID19 infection. Otherwise, no association has thus far been identified between DMT use and COVID19 severity.