Non-Arthroplasty Options for Osteoarthritis of the Knee

Robert A. Duerr, MD
Assistant Professor
Orthopedic Surgery and Sports Medicine
The Ohio State University Wexner Medical Center

Disclosures

- Educational Support – Arthrex
- None related to this talk

Defining the Problem

- Osteoarthritis (OA)
 - Clinical syndrome of joint pain, swelling and stiffness
 - Characterized by gradual loss of articular cartilage, osteophyte formation, subchondral bone remodeling, and joint inflammation

Defining the Problem

- Osteoarthritis (OA)
 - Most common form of joint disease
 - 7.7 million ambulatory visits yearly
 - $3.4 to $13.2 Billion annual job-related costs
 - Among leading cause of disability worldwide
 - 10% of people over 55 yo with symptomatic knee OA
 - Correlation between severity of walking disability and risk of death (CV disease)
Why do people get OA?

- Trauma
- Gender (F > M)
- Race
- Age
- Occupation
- Obesity (3x increase in US since 1995)
 - Metabolic syndrome (Central obesity, dyslipidemia, HTN, elevated fasting glucose)
 - Altered metabolic profile = increased joint inflammation
- Genetic markers – Linked to Vit D receptor, estrogen receptor 1, IL-1, IL-4, BMP-2, BMP-5, matrilin-3

Other Factors

- Instability (Chronic ligament injury)
 - Shear stress on cartilage
- Muscle weakness
 - Stress and overload
- Malalignment
 - Overload

All lead to abnormal stresses on the cartilage

Patient presentation

- Pain*
- Swelling
- Morning stiffness <30 min
- Worse with activities
- Mechanical symptoms
 - Catching, locking

Pathophysiology

Standard X-ray Series

- Bilateral Weightbearing AP
- 45° PA Flexion (Rosenberg)

Standard X-ray Series

- 30° WB Lateral
- Merchant View

Radiographs

- Do Not Always Correlate with Symptoms

Radiographic Grading

- Kellgren-Lawrence Scale
 - 1
 - 2
 - 3
 - 4
Magnetic Resonance Imaging (MRI)

- Not necessary
- Useful to rule out other pathology after failed conservative treatment
 - Meniscus
 - Ligament
 - Insufficiency fractures
- Surgical planning
 - Partial knee replacement
 - Osteotomy

What is “Normal”?

Hip-Knee-Ankle Angle

- 500 knees in 250 healthy volunteers measured on full length weight bearing X-ray
 - Only 2% with neutral MA
 - 76% within 3°
 - Males: 32% > 3° varus
 - Females: 17% > 3° varus
 - 2.4% >3° valgus
First Line Treatment Algorithm

- Self management – “Get moving”
- Physical therapy
- Weight loss
- Anti-inflammatory medications
 - Oral NSAIDs, COX-2 Inhibitors
 - Intra-articular steroids
- Unloader bracing

Self Management – “Home Exercise Program”

- Exercise*
 - Walking, stationary bike, water aerobics, elliptical
 - Underutilization due to fear of disease progression
 - Recommend 180 min/week

Physical Therapy

- Supervised exercise program
- Goals:
 - Preserve ROM
 - Correct gait impairment
 - Strengthening - Hip abductors, Quad, Hamstrings
- Severe OA
 - Aquatic PT
 - Land PT may worsen symptoms
 - “Post-PT syndrome” → 6 weeks PT followed by...
Weight Loss

- **BMI 25 – 30**
 * Discussion of proper diet
- **BMI 30 - 35**
 * Consider nutritionist referral
- **BMI 35– 40**
 * Consider comprehensive weight management program
- **BMI >40**
 * Comprehensive weight management program referral prior to any surgery

Oral Medications

- Based on severity of symptoms
- **Mild – Moderate**
 - NSAIDs (Ibuprofen, Naprosyn)
 - Diclofenac
 - Meloxicam
 - COX-2 Inhibitors (Celebrex)
- **Severe**
 - Rarely Tramadol
 - Do NOT provide narcotic pain medications for OA pain

Topicals

- NSAIDs
 - Voltaren gel
- Compounded Creams
 - Mixture of medications
 - Can be $$$
- Capsaicin

Unloader Brace

- Patients with **isolated** medial or lateral compartment OA
- Apply an external valgus (or varus) force, reducing the load in the medial/lateral compartment
- Improved joint proprioception can also help reduce pain
Intra-articular Injection Options

- Corticosteroids
- Hyaluronic Acid
- Orthobiologics:
 - Platelet Rich Plasma (PRP)
 - Adipose derived stromal cells
 - Bone marrow derived mesenchymal stem cells
 - Amniotic-derived therapies

Surgical Options in Knee OA

Cartilage Restoration

- Focal chondral defects (>2 cm²)
 - Autologous chondrocyte implantation (MACI)
 - Osteochondral allograft transplant
 - Correction of other contributing factors

Joint Preservation

Cartilage Restoration

Joint Replacement

20-40 yo ▶ 40-60 yo ▶ 60+

Cartilage Restoration in Knee OA

- Autologous Chondrocyte Implantation (ACI or MACI)
- Autologous cultured chondrocytes on porcine collagen membrane
- Goal: Form autologous "Hyaline-like" cartilage

Photo courtesy Dr. Tom Minas
Autologous Chondrocyte Implantation

- Requires staged arthroscopic harvest from non-weight bearing area

Autologous Chondrocyte Implantation

- Pros: Regeneration of autologous tissue
 - Can address larger and various sized defects
 - Multiple defects
- Cons: High costs
 - 2-stage procedure
 - Prolonged protection needed to allow maturation of chondrocytes

Case Example

- 26 yo F persistent anterior knee pain
- Underwent previous arthroscopy → Partial thickness cartilage injury to patella
- 2 years of persistent pain
- Failed PT, NSAIDs, Nerve ablation, pain management

Patella cartilage defect
Cartilage defect after removal of damaged cartilage

After implantation of MACI

MACI sealed with fibrin glue

Osteochondral Allograft
- Goal: Replace defect with live chondrocytes in mature matrix with underlying bone
- Fresh, refrigerated grafts
 * Retain chondrocyte viability
Osteochondral Allograft

- Performed as shell (dowel) or bulk grafts
- Match size and radius of curvature of the condyle
- Pros: Address large defects, correct bone loss, use in revision or failed ACI
- Cons: Limited availability, high costs, potential risk of infection
- "Catastrophic" failure
Osteochondral Allograft

“Snowman” Technique
- Larger Defects

Surgical Options in Knee OA
- Cartilage Restoration
- Joint Preservation
- Joint Replacement
- 20-40 yo
- 40-60 yo
- 60+

Principles of Knee Joint Preservation
- Cartilage
- Stability
- Alignment
Lower Limb Malalignment

- Angular deformity in the lower limb
- Abnormal distribution of weight bearing stresses
- Accelerate wear in medial or lateral compartments
- Corrective osteotomy used to redistribute forces evenly
- Often combined with cartilage restoration to improve mechanical environment for biologic healing

High Tibia Osteotomy Indications in Knee OA

<table>
<thead>
<tr>
<th>Age</th>
<th>HTO</th>
<th>HTO vs. UKA</th>
<th>UKA</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA Grade</td>
<td>KL 1-3</td>
<td>KL 4 → UKA</td>
<td>KL 3-4</td>
</tr>
<tr>
<td>Deformity</td>
<td>5 – 20° varus</td>
<td>>10° → HTO</td>
<td>≤10°</td>
</tr>
<tr>
<td>Activity</td>
<td>Any activity level</td>
<td>Low impact activities</td>
<td></td>
</tr>
<tr>
<td>Bottom line</td>
<td>More durable for laborer or runners – willing to tolerate some pain</td>
<td>Individualized discussion with patient</td>
<td>Better pain relief and functional outcomes</td>
</tr>
</tbody>
</table>

Case Example

- 45 yo F worsening medial joint line pain
- Recurrent knee effusion
- Steroid injection provided 1 month relief

- MRI
 - Full thickness cartilage defect
 - Subchondral edema
Full Length X-rays
- Varus Malalignment
- Dx?
 - Medial compartment overload

Treatment
- Steroid injection
- Medial unloader brace
- Arthroscopic staging procedure
 - Chondroplasty, loose body removal

Medial femoral condyle
Second-Stage

- “Snowman” Osteochondral allograft
- Valgus producing high tibia osteotomy
 - Mechanical environment

Case Example

- 44 M worsening bilateral knee pain
- Failed multiple conservative treatments
- Construction worker

Case Example

- Rosenberg View
- Kellgren Lawrence Grade 3
*Intact lateral compartment cartilage and meniscus

Medial compartment OA
Case Example

- 5 months post-op

Valgus Malalignment

- 30 yo F
- Worsening pain
- Multiple knee arthroscopic surgeries
- Told that only option was TKA
Distal Femur Osteotomy Templating

- 12° Valgus
- Calculated 14.8 mm correction

Distal Femur Osteotomy Biplanar Technique
Osteotomy Outcomes in Knee OA

- High tibial osteotomy for varus knee OA
 * 10-year survivorship 74-95%
 * 15-year survivorship 67-90%

- Distal femur osteotomy for valgus knee OA
 * 10-year mean survivorship 80%
Medial Meniscus Posterior Root Tears

- "The Silent Epidemic" in joint preservation
- Often missed on MRI and arthroscopy
- Can lead to rapid OA
 - Inability to resist hoop stresses
 - Meniscal extrusion
 - Cartilage breakdown
 - Insufficiency fractures
- Early Dx important

Diagnosis

- 40-60yo F
 - Posteromedial knee pain
 - BMI 30-40
- Minor trauma
 - i.e. Stepping off curb
 - Felt a “pop”
 - Sudden severe pain
- + Joint effusion, Medial joint line tenderness

MRI: 7/26/19 10/27/2020

Treatment

- Historically, treated conservatively or with partial meniscectomy
- Improved surgical techniques → Transtibial meniscus root repair
- Goal: Restore hoop stresses to minimize OA
- Risk of progression to OA over 10 years
 - Conservative – 95.1%
 - Partial meniscectomy – 99.3%
 - Meniscus repair – 53% (Newer techniques lower)
Meniscus Root Repair

- Post-op
 - 4 weeks of Non-weight bearing
 - 2 weeks of slow progression to WB
- 1 year in medial unloader brace to protect repair

Case Example:
38yo F worsening medial joint pain
Meniscus root repair + Microfracture + PRP

Arthrex iBalance HTO

Surgical Options in Knee OA

- Cartilage Restoration
- Joint Replacement
- Joint Preservation

Emerging Surgical Techniques

- Episealer Implant
 - Patient-specific implant based on MRI
 - Remove damaged bone and cartilage
 - Replace with cobalt-chrome alloy
 - US Clinical trial starting at OSU Spring 2021

Emerging Surgical Techniques

- NuSurface
 - Polycarbonate-urethane meniscus replacement device
 - Used in patients after meniscectomy
 - Mimics function of normal meniscus and redistributes load transmission across joint
 - Approved in Europe since 2008
 - Ongoing FDA clinical trial
 - First device implanted at OSU
Emerging Surgical Techniques
- Moximed Atlas
 - Implantable joint unloader
 - Ongoing US Clinical trial

Case Example: 58 yo M
- Years of worsening pain
- Previous conservative Tx
- Wants to get back to working out

Rosenberg View

Robotic-assisted Partial Knee Arthroplasty
Advantages of UKA

- Compared to TKA
 - Less blood loss
 - Less morbidity (smaller incision, less pain)
 - Shorter hospital stay
 - Faster recovery and rehab
 - Preservation of normal knee kinematics (ACL, PCL, lateral and PF joints)

- Compared to HTO
 - Faster recovery and rehab
 - Higher initial success rates
 - Fewer short term complications
 - Longer durability
 - Easier to convert to TKA (Historically)

Intra-articular Injection Options

- Corticosteroids
- Hyaluronic Acid
- Orthobiologics:
 - Platelet Rich Plasma (PRP)
 - Adipose derived stromal cells
 - Bone marrow derived mesenchymal stem cells
 - Amniotic-derived therapies

Corticosteroids Efficacy

- Randomized controlled trials
 - Evidence that IA steroids are effective to reduce pain, but benefit over placebo is short-lived (4-6 weeks)
 - Inconsistent effects on functional outcomes
 - Presence of an effusion is a good predictor for positive effect of Steroid (esp. with aspiration)
Corticosteroids Risks and Side Effects

- Steroid flare
 - May begin 6-12h post-injection, last 1-3 days
- Inconclusive evidence
 - Accelerated disease progression
 - Osteonecrosis
 - Insufficiency fractures

Steroid Injections – Bottom Line

- Consider in patients during “OA flare” with moderate to severe pain and large effusion
 - Short-term pain relief
- Minimum 3 months before repeat injection
- Counsel patients regarding no long-term benefit and risks of OA progression
 - Risk of disease progression may increase with repeated injections

Hyaluronic Acid

- HA is naturally occurring glycosaminoglycan and component of Synovial Fluid and Cartilage matrix
- Acts as viscous lubricant during slow joint movements and as elastic shock absorber during rapid joint movement
- Functions through anti-inflammatory, anabolic, analgesic, and chondroprotective mechanisms
- Harvested from Rooster combs or via bacterial fermentation

Hyaluronic Acid Efficacy

- Conflicting clinical data
- Meta-analyses
 - 2 concluded overall beneficial effect
 - 4 reported small benefit
 - 2 found no evidence to support use
- >50% studies industry funded → Risks of publication bias
- Adverse effects → transient local reaction 2-4% (higher rates with avian-based)
Hyaluronic Acid Bottom Line

- Intra-articular injection of HA is safe with low risk of local reaction
 - Recommend 15 minutes icing immediately after injection
- May provide pain reduction in mild OA for up to 6 months
- Cost-effectiveness is questionable, especially in patients with moderate-severe OA

Orthobiologics

- Platelet Rich Plasma (PRP)
- Adipose derived stromal cells
- Bone marrow derived mesenchymal stem cells
- Amniotic-based therapies

What is PRP?

- Autologous concentration of human platelets in a small volume of plasma produced from a patient’s own centrifugated blood
- Concentrated platelets contain increased amounts of growth and differentiation factors
- At concentrations >1,000,000 per microliter → improvements in bone and soft tissue healing properties have been demonstrated

PRP in Knee OA

- Relatively safe procedure with minimal adverse effects (pain, effusion)
- Strong evidence that:
 - PRP may exert positive influence in patients with knee OA
 - RCTs demonstrate greater and longer efficacy for pain and function versus HA and placebo
 - Beneficial effect estimated to last up to 1 year with peak at 6 months
- Best results in younger patients with mild OA
Stem Cell-Based Therapies

- Knee OA
 - Limitation of cartilage is inability to heal or regenerate
 - After injury → Typically fibrocartilage forms and can more easily break down leading to OA
 - Mesenchymal Stem Cells or Medicinal signaling cells (MSCs) may provide biologic machinery to organize the complex processes involved in the regenerative process

Stem Cell-Based Therapies

- Stem cells provide functions that can assist the healing:
 - Differentiate into terminal cells
 - Reduce inflammation
 - Secrete growth factors
 - Encourage cell migration
 - Coordinate tissue repair

Challenges of Stem Cell-Based Therapies

- Efficient isolation and delivery
- Unclear optimal number of cells needed to achieve regeneration
- Regulatory restrictions by FDA
 - Cannot expand or manipulate MSCs outside of the body
 - Only allow simple mechanical preparation (Centrifugation)

Bone Marrow Derived Stem Cells

- Bone marrow aspirate concentrate (BMAC)
- Harvested from iliac crest, proximal tibia, or distal femur
- Centrifugation to concentrate MSCs
- Pros: Ease to harvest, large yield of cells
- Cons: Donor site pain, cost (procedure), effectiveness limited by patient health/age
Adipose Derived Stem Cells
- Lipoaspirate from abdomen
- Mechanical process to wash out the lipids to retain stromal vascular fraction that is rich in stem cells
- Pros: No significant decline of cell number with age, ease of harvest, large cell yield
- Cons: Morbidity, cost (procedure)

Stem Cells in Knee OA
- Promising pre-clinical data in animal studies
- Clinical studies report improvements in pain and function over baseline up to 2 years
 - Conclusions limited by small sample size, no control group, variable preparations and outcome measures
 - Optimal cell dose and long-term durability unclear

Amniotic-Derived Therapies
- Amniotic Membrane
 - Extra-cellular matrix components
 - Multiple collagen types, fibronectin, laminins, aggrecan, hyaluronic acid
- Amniotic-derived stem cells
 - Human amnion epithelial cells (hAECs)
 - Human amnion mesenchymal stromal cells (hAMSCs)
- Amniotic Fluid
- Recovered during C-section from consenting, healthy, pre-screened donors

Amniotic-Derived Therapies
- Bioactive characteristics
 - Anti-microbial
 - Anti-tumorigenic
 - Anti-fibrotic
 - Anti-inflammatory
- Clinical benefits
 - Reduces pain and inflammation (ECM components)
 - Inhibits scarring (ECM components)
 - No immunogenicity (T cell suppression; monocyte inhibition)
 - Enhances wound healing (bioactive cytokines)
Amniotic-Derived Therapies

- Long history of safety and efficacy in preventing fibrosis and scarring in wound healing
- Promising pre-clinical evidence for efficacy in knee OA
- Single clinical trial (200 patients with knee OA) demonstrates safe and effective versus saline and HA

In Summary

- Get your patients moving → Exercise and weight loss are most important initial steps
- Consider Aquatic PT
- Several injectable options
 - OA Flare → Steroid
 - Mild OA → HA/Orthobiologics