Update on Treatment of COVID-19

Michael Haden, MD
Assistant Professor of Medicine
Division of Infectious Diseases
The Ohio State University Wexner Medical Center

Situation in United States

As of November 2020 in the U.S.

• Over 11 million total cases

• Nearly 250,000 deaths
SARS-CoV-2

Incubation period can be up to 14 days from time of exposure
• Median 4-5 days

Spectrum of illness asymptomatic to severe illness and death
COVID-19

Primarily a pulmonary disease, however emerging data also suggests cardiac, dermatologic, hematological, hepatic, neurological, renal and other complications

Thromboembolic events are common, highest risk in critically ill patients

The long-term sequelae of COVID-19 survivors are currently unknown

COVID-19

80% infected have mild illness

15% severe: SpO2 < 94% on room air

5% critical: mechanical ventilation or ECMO

10% of all infections are hospitalized

• 10% requiring ICU level of care
Infection Prevention and Control

Limit potential facility exposure

• Consider postponing elective procedures

• Use telehealth options when possible

• Limit points of entry

• Screen all patients and visitors for signs and symptoms of COVID-19
 • This will miss asymptomatic / pre-symptomatic individuals
Infection Prevention and Control

Patients and visitors should wear a mask upon arrival and throughout their stay.

Restrict visitors who have suspected or confirmed SAR-CoV-2 infection, or have had close contact with SARS-CoV-2 person.

Infection Prevention and Control

Symptomatic patients should be isolated in an exam room with the door closed.

Airborne infection isolation rooms should be reserved for those undergoing aerosolizing procedures.

Consider universal pre-admission or pre-procedural testing of patients.

Infection Prevention and Control

Healthcare workers (HCWs) should wear a facemask at all times within the facility
• This includes in breakrooms or other common areas

Encourage physical distancing (6 feet) as much as possible

Testing

Viral (nucleic acid or antigen) tests are recommended for diagnosis of acute infection

Antibody testing not approved or recommended as sole basis for diagnosis of acute infection

Nasopharyngeal, mid-turbinate or nasal swabs are preferred to oropharyngeal or saliva alone

Lower respiratory tract specimens can be tested if suspicion remains high
Personal Protective Equipment (PPE)

Facemask and eye protection for all patient encounters
• Glasses are not sufficient

SARS-CoV-2 positive patients require addition of gown and gloves

N95 (or equivalent) or higher level respirator for AGP and surgical procedures with high risk of COVID transmission (nose, oropharynx, respiratory tract)

Aerosol generating procedures

• Procedures:
 • Intubation / Extubation
 • Endoscopy (EGD, Bronchoscopy, TEE)
 • CPR
 • Tracheostomy placement

• Bedside Care:
 • Nasopharyngeal swab (testing for COVID)
 • NG / OG tube placement
 • Suctioning, sputum induction or tracheal aspiration
PPE

• Follow the recommended sequence for safely donning and doffing PPE to avoid self contamination

• Hand hygiene should be performed before and after all patient contact, before putting on and after removing PPE
 • Alcohol based hand sanitizer or soap and water
Donning (putting on the gear):
More than one donning method may be acceptable. Training and practice using your healthcare facility’s procedure is critical. Below is one example of donning.

1. Identify and gather the proper PPE to don. Ensure choice of gown size is correct (based on training).
2. Perform hand hygiene using hand sanitizer.
3. Put on isolation gown. Tie all of the ties on the gown. Assistance may be needed by another HCP.
4. Put on NIOSH-approved N95 filtering facepiece respirator or higher (use a facemask if a respirator is not available). If the respirator has a nosepiece, it should be fitted to the nose with both hands, not bent or tented. Do not pinch the nosepiece with one hand. Respirator/facemask should be extended under chin. Both your mouth and nose should be protected. Do not wear respirator/facemask under your chin or store in scrubs pocket between patients.
 » Respirator: Respirator straps should be placed on crown of head (top strap) and base of neck (bottom strap). Perform a user seal check each time you put on the respirator.
 » Facemask: Mask ties should be secured on crown of head (top tie) and base of neck (bottom tie). If mask has loops, hook them appropriately around your ears.
5. Put on face shield or goggles. Face shields provide full face coverage. Goggles also provide excellent protection for eyes, but fogging is common.
6. Perform hand hygiene before putting on gloves. Gloves should cover the cuff (wrist) of gown.
7. HCP may now enter patient room.

Doffing (taking off the gear):
More than one doffing method may be acceptable. Training and practice using your healthcare facility’s procedure is critical. Below is one example of doffing.

1. Remove gloves. Ensure glove removal does not cause additional contamination of hands. Gloves can be removed using more than one technique (e.g., glove-in-glove or bird beak).
2. Remove gown. Untie all ties (or unsnap all buttons). Some gown ties can be broken rather than untied. Do so in gentle manner, avoiding a forceful movement. Reach up to the shoulders and carefully pull gown down and away from the body. Rolling the gown down is an acceptable approach. Dispose in trash receptacle.
3. HCP may now exit patient room.
4. Perform hand hygiene.
5. Remove face shield or goggles. Carefully remove face shield or goggles by grabbing the strap and pulling upwards and away from head. Do not touch the front of face shield or goggles.
6. Remove and discard respirator (or facemask if used instead of respirator).* Do not touch the front of the respirator or facemask.
 » Respirator: Remove the bottom strap by touching only the strap and bring it carefully over the head. Grasp the top strap and bring it carefully over the head, and then pull the respirator away from the face without touching the front of the respirator.
 » Facemask: Carefully untie (or unhook from the ears) and pull away from face without touching the front.
7. Perform hand hygiene after removing the respirator/facemask and before putting it on again if your workplace is practicing reuse.

*Facilities implementing reuse or extended use of PPE will need to adjust their donning and doffing procedures to accommodate those practices.
Optimizing PPE supply

Cancel elective and non-urgent procedures / appointments

Reserve PPE for healthcare workers

Use re-usable PPE that can be reprocessed if able

Consider extending use of respirators, facemasks and eye protection beyond a single patient contact

Occupational Exposure

HCW with prolonged close contact with SARS-CoV2- positive patient, visitor or staff (cumulative period of 15 minutes or longer)

• No facemask or respirator: quarantine for 14 days

• Face mask / respirator: continue to work, monitor symptoms and quarantine if symptoms develop
Community Exposure

HCW with prolonged close contact with SARS-CoV2-positive person in community should quarantine until 14 days from last exposure

Return to work

Confirmed or suspected SARS-CoV-2 infection:
• Mild-moderate: 10 days since symptom onset, 24 hours afebrile, symptoms improved
• Moderate-severe: 10-20 days

Test based strategy no longer recommended
Discontinuation of Isolation

Mild to Moderate:
• 10 days from symptom onset
• 24 hours afebrile
• Symptoms overall improved

Moderate to Severe
• At least 10 days from symptom onset, can extend up to 20
• 24 hours afebrile
• Symptoms overall improved

Treatment
Dexamethasone

RECOVERY trial
• Lower 28 day mortality seen in those on supplemental O2 or mechanical ventilation
• No benefit among those not requiring respiratory support

Dexamethasone 6 mg IV or PO daily for 10 days
• Equivalent glucocorticoid may be used if dexamethasone unavailable

Remdesivir

Inhibitor of the viral RNA-dependent RNA polymerase

FDA approved October 22, 2020

In setting of limited resource, remdesivir is most beneficial in those with severe illness, not critical

Given as 5 day course in severe illness, extended to 10 days in critical illness
Bamlanivimab

Monoclonal antibody against directed against SARS-CoV-2 spike protein

Designed to block virus’ attachment and entry into human cells

FDA issued EUA November 9, 2020

Authorized for outpatients with high risk for severe COVID-19

Not authorized for hospitalized patients or those requiring oxygen therapy due to COVID-19

Convalescent Plasma

FDA issued EUA on August 23, 2020

IDSA guidelines recommend convalescent plasma be used in setting of a clinical trial
Casirivimab and Imdevimab (Regeneron)

Recombinant human IgG1 monoclonal antibody that targets receptor binding domain of the spike protein of SARS-CoV-2

FDA issued EUA November 21, 2020

Indicated for mild to moderate COVID-19

NOT indicated for hospitalized patients or those requiring oxygen therapy

Therapies not recommended

Hydroxychloroquine or Chloroquine with or without Azithromycin

Lopinavir / ritonavir, except in setting of a clinical trial

Tocilizumab, except in setting of a clinical trial

Famotidine
Vaccine

Operation Warp Speed

Partnership between multiple federal and private agencies to expedite vaccine development

Goal is to deliver 300 million doses of vaccine, initial doses by January 2021

Three vaccine candidates have been funded for phase 3 trials
Vaccine

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Mechanism</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderna mRNA-1273</td>
<td>mRNA-based vaccine</td>
<td>Phase 3</td>
</tr>
<tr>
<td>Pfizer / BioNTech BNT162</td>
<td>mRNA-based vaccine</td>
<td>Phase 3</td>
</tr>
<tr>
<td>University of Oxford / AstraZeneca AZD1222</td>
<td>Replication-deficient viral vector (chimpanzee adenovirus)</td>
<td>Phase 3</td>
</tr>
</tbody>
</table>

Inpatient Management of COVID-19

Rachel Quaney, MD
Clinical Instructor of Internal Medicine
Division of Pulmonary, Critical Care, and Sleep Medicine
The Ohio State University Wexner Medical Center
Outline

- Respiratory failure
- ARDS
- Coagulopathy
- Special groups
- Outcomes
Hospital course

• Median time from illness to dyspnea → 5-8 days

• Median time from illness to ARDS → 8-12 days

• Median time from illness to ICU admission → 9.5-12 days

Respiratory failure

Conventional oxygen therapy

High-flow nasal cannula (HFNC)

Closely monitored trial of noninvasive positive pressure ventilation (NIPPV) if intubation not indicated and HFNC not available

https://www.covid19treatmentguidelines.nih.gov/critical-care/
Respiratory failure

- **C3** Trial of awake prone positioning with persistent hypoxemia if no indication for intubation
- **A3** Recommendation against awake proning as rescue therapy to avoid intubation
- **A2** Close monitoring and intubation, if necessary, is performed by experienced practitioner in controlled setting

ARDS definition

<table>
<thead>
<tr>
<th>Imaging</th>
<th>Bilateral opacities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>Not fully explained by heart failure or volume overload</td>
</tr>
<tr>
<td>Timing</td>
<td>≤ 1 week since onset or insult</td>
</tr>
<tr>
<td>(\text{PaO}_2/\text{FiO}_2) (P:F) ratio</td>
<td>(< 300) (measured with PEEP (\geq 5) cmH(_2)O)</td>
</tr>
</tbody>
</table>

\(\text{PaO}_2\) as whole number (mmHg) & \(\text{FiO}_2\) as decimal
ARDS

A1: low tidal volume ventilation over higher tidal volumes (VT 4-8 mL/kg)

B2: prone ventilation for 12-16 hours per day for refractory hypoxemia despite optimized mechanical ventilation

C3: if still hypoxemic, recommend trial of inhaled pulmonary vasodilator; but if no rapid improvement in oxygenation, should be tapered off

https://www.covid19treatmentguidelines.nih.gov/critical-care/

Principles of ventilator settings

• We determine → independent variables
 • Ventilator Mode: volume or pressure cycled

• We measure → dependent variables
 • Peak pressure or tidal volume
Principles of ventilator settings

• We determine → independent variables
 • Ventilator Mode: volume or pressure cycled
 • Oxygen Concentration (FiO₂): 0.21 - 1.0
 • Minimum Respiratory Rate: set rate
 • PEEP

• We measure → dependent variables
 • Peak pressure or tidal volume
 • Plateau pressure
 • Auto PEEP (sometimes)

Ventilator mode most appropriate for acute hypoxemic respiratory failure

 Assist/Control Volume Control

• Vent supports all breaths to a targeted tidal volume
• A minimum rate (RR) is set and delivered to the patient
• All spontaneous breaths will be supported to the same targeted volume
Independent Regulation of Ventilation and Oxygenation

Assist/Control – Volume Control

- RR
- VT
- PEEP
- FiO₂

Ventilation

RR x VT = minute ventilation

= volume of air moved per minute

Initial settings — Hypoxemic respiratory failure with or at risk for ARDS

Assist/Control – Volume Control

<table>
<thead>
<tr>
<th>RR</th>
<th>VT</th>
<th>PEEP</th>
<th>FiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24 bpm</td>
<td>6 mL/kg PBW</td>
<td>12-18 cmH₂O</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Key point: The 6 mL/kg tidal volume is based on “predicted body weight”
- Males: PBW = 50 kg + 2.3 kg for each inch over 5 feet
- Females: PBW = 45.5 kg + 2.3 kg for each inch over 5 feet

Key point: Permissive hypercapnia is okay – low VT may require pH as low as 7.2
Initial settings—Hypoxemic respiratory failure with or at risk for ARDS

Assist/Control – Volume Control

<table>
<thead>
<tr>
<th>RR</th>
<th>VT</th>
<th>PEEP</th>
<th>FiO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24 bpm</td>
<td>6 mL/kg PBW</td>
<td>12-18 cmH₂O</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Goals for “lung protection”
- Low tidal volume 4-8 mL/kg PBW
- Plateau pressure < 30 cmH₂O
- Driving pressure < 15 cmH₂O

Data: Lung protective ventilation strategy is the only intervention that has been definitively shown to reduce mortality in patients with ARDS

Principles of ventilator settings

- We determine → independent variables
 - Ventilator Mode: volume or pressure cycled
 - Oxygen Concentration (FiO₂): 0.21 - 1.0
 - Minimum Respiratory Rate: set rate
 - PEEP

- We measure → dependent variables
 - Peak pressure or tidal volume
 - Plateau pressure
 - Auto PEEP (sometimes)

- We look for and respond to:
 - Oxygenation (PaO₂ or SpO₂)
 - Ventilation (pCO₂ and pH)
 - The Obvious: ventilator dyssynchrony or “blowouts” like pneumothorax
 - The Occult: auto PEEP
Monitors

• Blood gas (arterial)
 • pH
 • PaCO₂
 • PaO₂

• Pulse oximetry
 • SpO₂

Goals

• Oxygenation (FiO₂ and PEEP)
 • PaO₂ ~65 mmHg
 • SpO₂ ~90%

• Ventilation (RR and Vₜ)
 • pH 7.2-7.45
 • PaCO₂
 • permissive hypercapnia except with increased intracranial pressure

Using plateau pressure
Using plateau pressure

- Goal plateau < 30 cmH₂O
- Goal driving < 15 cmH₂O

Adjusting PEEP and FiO₂

OXYGENATION GOAL: PaO₂ 55-80 mmHg or SpO₂ 88-95%
Use a minimum PEEP of 5 cm H₂O. Consider use of incremental FiO₂/PEEP combinations such as shown below (not required) to achieve goal.

Lower PEEP/higher FiO₂

<table>
<thead>
<tr>
<th>FiO₂</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FiO₂</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>0.9</th>
<th>0.9</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>18-24</td>
</tr>
</tbody>
</table>

Higher PEEP/lower FiO₂

<table>
<thead>
<tr>
<th>FiO₂</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.3</th>
<th>0.4</th>
<th>0.4</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FiO₂</th>
<th>0.5</th>
<th>0.5-0.8</th>
<th>0.8</th>
<th>0.9</th>
<th>1.0</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEEP</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>
Prone positioning

- Early prone positioning in severe ARDS improves oxygenation and may have a mortality benefit
 - Consider early if P:F < 150 despite low tidal volume ventilation

- How it works:
 - ↓ compression of left lung by the heart
 - ↓ dependent atelectasis from interstitial edema
 - Allows more lung regions to be functional
 - Improves V/Q mismatch by impacting both blood flow and ventilation in more alveoli

Neuromuscular blockade

- 2010 ACURASYS trial → mortality benefit
- 2019 ROSE trial → no mortality benefit compared to lighter sedation

- Bottom line:
 - Not needed for all ARDS patients
 - Still useful for significant vent dyssynchrony OR refractory hypoxemia/hypercapnia

- If used:
 - Ensure adequate continuous sedation and analgesia
 - Ensure VTE prophylaxis
Troubleshooting

Using plateau pressure

- May be helpful in identifying/differentiating complications
 - Peak pressure (PIP) reflects airway resistance
 - Plateau pressure (Pplat) reflects lung/pleural compliance, elastic recoil
- Peak minus plateau is normally < 5 cmH₂O
Causes of high peak pressure

- Mucus plugging
- Bronchospasm
- Biting endotracheal tube

- Pneumothorax
- Right mainstem intubation
- Excessive alveolar distension (auto PEEP)
- Abdominal distension (rigid abdomen, severe obesity)

Auto PEEP

- Also known as “dynamic hyperinflation” or “breath stacking”

- Incomplete exhalation before a new breath is delivered

- Why it is bad:
 - Inadequate ventilation
 - Increased intrathoracic pressure, can lead to cardiovascular compromise
Auto PEEP

• How to tell:
 • Ventilator flow waveform ➔
 • Increasing peak pressure

• What to do:
 • Increase exhalation time
 • Decrease respiratory rate
 • Decrease I:E ratio
 • Increase inspiratory flow
 • Decrease tidal volume
 • Adjust PEEP to improve airway patency
 • In extreme circumstances, disconnect circuit

Mucus plugging

• Increase in peak pressure, usually WITHOUT plateau pressure
• Decreased breath sounds on affected side, or bilaterally if plug is in ET tube or trachea
• May have asymmetric chest rise
• Should still have lung sliding on ultrasound, though may be lessened
• Confirmation with chest X-ray if not acutely hypoxemic
Pneumothorax

- Increase in peak pressure AND plateau pressure
- Decreased breath sounds, or hyperresonance, on affected side
- May have asymmetric chest rise, subcutaneous emphysema (later)
- Due to closed ventilator circuit, increasing intrathoracic pressure can have hemodynamic consequences = TENSION
- Lack of lung sliding on ultrasound
- Confirmation with chest X-ray if not acutely hypotensive

Outline

- Respiratory failure
- ARDS
- Coagulopathy
- Special groups
- Outcomes
Coagulopathy

Incidence of VTE in COVID-19 ranges from 1.1% to 69%

Therapeutic anticoagulation: continue some form

Thromboprophylaxis: LMWH > UFH > mechanical

Empiric anticoagulation: clinical trials

Clotting devices: may be reasonable to increase intensity or switch anticoagulant

Post-discharge thromboprophylaxis: not routinely, but consider VTE risk, bleeding risk, and feasibility

American Society of Hematology
National Institutes of Health

NIH treatment guidelines found at nih.gov
ASH treatment guidelines found at hematology.org
Outline

Respiratory failure
ARDS
Coagulopathy
Special groups
Outcomes

Special groups
increased risk for severe COVID-19

- Cancer
- Chronic kidney disease
- COPD
- Heart conditions
- Solid organ transplant recipient
- Obesity
- Pregnancy
- Sickle cell disease
- Smoking
- Type 2 diabetes mellitus

Special groups
increased need for precautions

<table>
<thead>
<tr>
<th>Individual situation</th>
<th>Living situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Racial and ethnic minority groups</td>
<td>• Rural communities</td>
</tr>
<tr>
<td>• Disabled</td>
<td>• Experiencing homelessness</td>
</tr>
<tr>
<td>• Developmental disorders</td>
<td>• Refugee populations</td>
</tr>
<tr>
<td>• Behavior disorders</td>
<td>• Nursing homes</td>
</tr>
<tr>
<td>• Drug and substance use disorders</td>
<td>• Longer-term care facilities</td>
</tr>
<tr>
<td></td>
<td>• Group homes</td>
</tr>
</tbody>
</table>

Pregnancy

↑ risk of hospitalization, ICU admission, and mechanical ventilation

• Management nuances:
 • Presume difficult airway
 • Left lateral decubitus position improves pre-load
 • Maintain SpO2 > 95%

Pregnancy and steroids

- betamethasone
- dexamethasone
- prednisolone

ARDS and steroids

- methylprednisolone
- dexamethasone
Steroids for pregnancy and COVID-19

- betamethasone
- dexamethasone

- methylprednisolone
- dexamethasone
Steroids for pregnancy and COVID-19

Pregnant with COVID-19 requiring supplemental oxygen

Glucocorticoids indicated for fetal lung maturity?
(24 0/7 to 33 6/7 weeks)

- **No**
 - Methylprednisolone 32 mg/day x 10 days

- **Yes**
 - Dexamethasone 6 mg IM q12hrs x 4 doses

Options:
- Methylprednisolone
- Dexamethasone

Steroids
- betamethasone
- dexamethasone

Methylprednisolone
Steroids for breastfeeding and COVID-19

Pregnant with COVID-19 requiring supplemental oxygen

Glucocorticoids indicated for fetal lung maturity? (24 0/7 to 33 6/7 weeks)

No

Methylprednisolone 32 mg/day x 10 days

Yes

Dexamethasone 6 mg IM q12hrs x 4 doses

Outline

Respiratory failure

ARDS

Coagulopathy

Special groups

Outcomes
Outcomes

• 1648 patients hospitalized with COVID-19 in Michigan March - July

24.2% mortality 75.8% survival

• 60 days after discharge

29.2% mortality 70.8% survival

Outcomes

• 405 patients receiving ICU treatment

63.5% mortality 36.5% survival

• 15.1% of hospital survivors were rehospitalized within 60 days

Issues after discharge

• 488 (41.8%) were able to be contacted 60 days postdischarge
 • 159 with cardiopulmonary symptoms
 • 65 with anosmia or ageusia
 • 58 with ADL difficulties

• Of 195 employed prior to hospitalization:
 • 117 returned to work but 30 of those with reduced or modified duties
 • 78 could not return to work

• 238 emotionally affected by their health
• 179 financially impacted

Summary

Respiratory failure
ARDS
Coagulopathy
Special groups
Outcomes
References

Acknowledgements

• Drs. Lynn Fussner and Jeff Horowitz