The Evolving History of Anticoagulation: The DOAC Era?

Tiffany C. Ortman, PharmD, BCACP, CACP
Specialty Practice Pharmacist, Ambulatory Care
The Ohio State University Wexner Medical Center

Objectives

• Discuss the evolution of anticoagulation therapy
• Compare and contrast the place in therapy for anticoagulants used in the outpatient setting
• Identify when parenteral anticoagulant bridge may be warranted in patients on warfarin with atrial fibrillation and/or venous thromboembolism
• Determine optimal oral anticoagulant based on patient-specific characteristics
• Recommend appropriate monitoring for direct oral anticoagulants
Evolution of Anticoagulation

Hirudo medicinalis → Heparin
180 A.D. → 1939
1952
1985-1993
1997-2000
2001
2003
2008-2015

Parenteral
DTIs
Fondaparinux
Ximelagatran

VKA = Vitamin K Antagonist
LMWH = Low-Molecular-Weight Heparin
DTI = Direct Thrombin Inhibitor
DOAC = Direct Oral AntiCoagulant

TF/VIIa

Initiation

Warfarin

Apixaban
Betrixaban
Edoxaban
Rivaroxaban
LMWH (via ATIII)

Xa

Amplification

Dabigatran

IIa

Propagation

Fibrinogen → Fibrin

FDA Approved Oral Anticoagulants

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Warfarin (Coumadin®, Jantoven®)</th>
<th>Dabigatran (Pradaxa®)</th>
<th>Rivaroxaban (Xarelto®)</th>
<th>Apixaban (Eliquis®)</th>
<th>Edoxaban (Savaysa™)</th>
<th>Betrixaban (Bevyxxa™)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevent SSE in NVAF</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VTE Treatment</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VTE Secondary Prevention</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VTE Prevention after hip or knee replacement</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VTE Prevention in acutely ill medical patients</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>After Cardiac Valve Replacement</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>In CAD and PAD (with ASA)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

SSE = Stroke and Systemic Embolism, NVAF = Non-Valvular Atrial Fibrillation

Oral Anticoagulants Comparison

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Warfarin</th>
<th>Dabigatran</th>
<th>Rivaroxaban</th>
<th>Apixaban</th>
<th>Edoxaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half life</td>
<td>40 h</td>
<td>12-14 h</td>
<td>7-13 h</td>
<td>8-13 h</td>
<td>10-14 h</td>
</tr>
<tr>
<td>Peak effect</td>
<td>4-5 days</td>
<td>1.5-3 h</td>
<td>2-4 h</td>
<td>1-3 h</td>
<td>1-2 h</td>
</tr>
<tr>
<td>Renal elimination</td>
<td>None</td>
<td>80%</td>
<td>33%</td>
<td>25%</td>
<td>35-50%</td>
</tr>
<tr>
<td>VTE Initial Phase: Oral Only?</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>VTE Secondary Phase Dosing</td>
<td>Once daily</td>
<td>BID</td>
<td>BID x21 days then Once daily</td>
<td>BID (reduced dose after 7 days)</td>
<td>Once daily</td>
</tr>
<tr>
<td>Antidote</td>
<td>Vitamin K</td>
<td>Idarucizumab</td>
<td>Andexanet alfa</td>
<td>Andexanet alfa</td>
<td>Andexanet alfa</td>
</tr>
</tbody>
</table>

J Thromb Thrombolysis 2016;41,15-31.
DOACs vs Warfarin for VTE

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran (RE-COVER)</th>
<th>Rivaroxaban (EINSTEIN)</th>
<th>Apixaban (AMPLIFY)</th>
<th>Edoxaban (Hokusai-VTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent Symptomatic VTE or VTE-related Death</td>
<td>Equal</td>
<td>Equal*</td>
<td>Equal</td>
<td>Equal*</td>
</tr>
<tr>
<td>Major Bleeding</td>
<td>Equal</td>
<td>↓</td>
<td>↓</td>
<td>Equal</td>
</tr>
<tr>
<td>Major and Clinically Relevant Non-Major Bleeding</td>
<td>↓</td>
<td>Equal</td>
<td>↓</td>
<td>↓</td>
</tr>
</tbody>
</table>

*Did not include VTE-related death

- GI bleeding event rates were too low to draw definite conclusions (consider extrapolation from afib trials)
- Low rates of intracranial hemorrhage with DOACs compared to warfarin

VTE Treatment Guidelines

2016 CHEST

In patients with DVT of the leg or PE and no cancer, as long-term anticoagulant therapy, we suggest DOAC over VKA therapy (grade 2B)

2019 ASCO

For long-term anticoagulation, LMWH, edoxaban, or rivaroxaban for at least 6 months are preferred over VKA

2020 ASH

AF Stroke Prevention Guidelines

For patients with AF and an elevated CHA\textsubscript{2}DS\textsubscript{2}-VASc score of ≥ 2 in men or ≥ 3 in women, oral anticoagulants are recommended.

DOACs are recommended over VKA in DOAC-eligible patients with AF (except with moderate-to-severe mitral stenosis or a mechanical heart valve).

The Future of Anticoagulation?

References:

Adverse Drug Reactions (ADRs)

WHO Database
- 39,972 reports in patients with NVAF
- 51% dabigatran, 28% warfarin, 19% rivaroxaban, 2% apixaban
- 204 ADRs with a reporting odds ratio > 1

FAERs Database
- 42,964 cases
- Rivaroxaban with highest rate per prescription for each ADR
- Dabigatran had the highest reported rates of ischemic stroke
- Warfarin with lowest rate per prescription for each ADR

Limitations of DOAC Use

- Mechanical heart valves
- Antiphospholipid syndrome
- Pregnancy and breastfeeding
- Moderate or severe hepatic impairment (Child-Pugh B or C)
- CYP3A4 and P-gp strong inducers/inhibitors
 - Examples of P-gp inducers: carbamazepine, rifampin, St. John’s Wort
 - Examples of P-gp inhibitors: amiodarone, azithromycin, ketoconazole, ritonavir, verapamil
Choice of Anticoagulant: Example Approach

FDA-approved Indication for DOAC

Does patient meet ≥1 of the following?
□ Able to obtain DOAC longitudinally
□ Likely to be compliant to medication
□ Not pregnant or breastfeeding
□ No clinically significant drug interactions
□ No altered GI absorption
□ Adequate renal/hepatic function
□ No extremes of weight?

Yes
DOAC candidate
Select DOAC based on patient characteristics and preferences

No
NOT a DOAC candidate
Warfarin or LMWH

Parenteral Anticoagulant Bridging for Warfarin

Intermediate Thromboembolic Risk
Consider based on individual risks/patient preferences

Atrial Fibrillation: CHA₂DS₂-VASc score 5-6 with prior stroke/TIA/SSE or prior history of embolic ischemic CVA/TIA/SSE

VTE: Bridging NOT recommended
VTE within past 3-12 months, Heterozygous factor V Leiden, Prothrombin 20210 mutation, recurrent VTE, active cancer

High Thromboembolic Risk
Bridging Advised

CHA₂DS₂-VASc score 7-9, Recent TE event (within 3 months) if procedure cannot be delayed, Rheumatic valvular disease, Recent (<4 weeks) cardioversion or AF ablation

Consider delaying procedure
Recent (within 3 months) TE event, Severe thrombophilia (protein C or S or antithrombin deficiency, APS)
DOACs in Renal Impairment

<table>
<thead>
<tr>
<th>Dabigatran</th>
<th>Rivaroxaban</th>
<th>Apixaban</th>
<th>Edoxaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrCl</td>
<td>Dose</td>
<td>CrCl</td>
<td>Dose</td>
</tr>
<tr>
<td>≥30</td>
<td>150 mg BID</td>
<td>>50</td>
<td>5 mg BID (VTE: 10 mg BID x7 day load)</td>
</tr>
<tr>
<td>29-15</td>
<td>75 mg BID (Avoid in VTE)</td>
<td>50-15</td>
<td>2 of 3: ≥80 y, Scr > 1.5 mg/dL, Weight ≤60 kg</td>
</tr>
<tr>
<td><15</td>
<td>Avoid</td>
<td><15</td>
<td>AF: 2.5 mg BID</td>
</tr>
<tr>
<td>HD</td>
<td>Avoid</td>
<td>HD</td>
<td>5 mg BID?</td>
</tr>
</tbody>
</table>

*CrCl in mL/min

*labeling suggests rivaroxaban may be administered to patients on HD at a dose of 15 mg, however, not adequately studied in large-scale clinical trial

Apixaban in Hemodialysis

Mavrakanas et al, 2017
- PK study
- N = 7
- At steady state, apixaban 5 mg BID increased exposure 2-5.7 times relative to 2.5 mg BID

Siontis et al, 2018
- Retrospective cohort study
- N = 25 523 with AF on HD or PD
- Apixaban 5 mg BID was associated with lower TE and major bleeding compared to warfarin

RENAL-AF, 2019
- Prospective randomized controlled trial (stopped early)
- N = 154 with AF on HD
- Apixaban 5 mg BID had similar rates of bleeding and stroke as warfarin (TTR ~44%) among patients with ESRD on HD
DOACs in Obesity

2016 ISTH SSC

We suggest that DOACs should not be used in patients with a BMI > 40 kg/m² or a weight > 120 kg

<table>
<thead>
<tr>
<th>DOAC</th>
<th>Trial</th>
<th>Indication</th>
<th>Weight or BMI Cutoff</th>
<th>Proportion of Obese Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dabigatran</td>
<td>RE-COVER I/II</td>
<td>VTE</td>
<td>≥ 35 kg/m²</td>
<td>12.1</td>
</tr>
<tr>
<td></td>
<td>RE-LY</td>
<td>AF</td>
<td>≥ 100 kg</td>
<td>17.1</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>EINSTEIN DVT/PE</td>
<td>VTE</td>
<td>> 100 kg</td>
<td>14.3</td>
</tr>
<tr>
<td></td>
<td>ROCKET-AF</td>
<td>AF</td>
<td>> 90 kg, ≥ 35 kg/m²</td>
<td>28.5, 13.6</td>
</tr>
<tr>
<td>Apixaban</td>
<td>AMPLIFY</td>
<td>VTE</td>
<td>≥ 35 kg/m²</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>ARISTOTLE</td>
<td>AF</td>
<td>> 30 kg/m²</td>
<td>40</td>
</tr>
<tr>
<td>Edoxaban</td>
<td>HOKUSAI VTE</td>
<td>VTE</td>
<td>> 100 kg</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td>ENGAGE AF-TIMI 48</td>
<td>AF</td>
<td>None</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR = Not Reported

DOACs in Morbidly Obese

<table>
<thead>
<tr>
<th>Study, Year</th>
<th>N</th>
<th>Indication</th>
<th>Weight, kg</th>
<th>BMI, kg/m²</th>
<th>Anticoagulant</th>
<th>Efficacy Outcome</th>
<th>Safety Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kido et al, 2019</td>
<td>128</td>
<td>AF</td>
<td>> 120</td>
<td>> 40</td>
<td>DOAC (D, R, A) Warfarin</td>
<td>1.75%/y p = 0.77</td>
<td>2.18%/y p = 0.09</td>
</tr>
<tr>
<td>Kushnir et al, 2019</td>
<td>429</td>
<td>AF</td>
<td>> 40</td>
<td>> 40</td>
<td>DOAC (R, A) Warfarin</td>
<td>1.8% p = 1.0</td>
<td>2.9% p = 0.087</td>
</tr>
<tr>
<td>Kushnir et al, 2019</td>
<td>366</td>
<td>VTE</td>
<td>> 40</td>
<td>> 40</td>
<td>DOAC (R, A) Warfarin</td>
<td>2.0% p = 0.69</td>
<td>1.5% p = 0.60</td>
</tr>
<tr>
<td>Kalani et al, 2019</td>
<td>180</td>
<td>VTE and AF</td>
<td>≥ 120</td>
<td>≥ 40</td>
<td>DOAC (D, R, A) Warfarin</td>
<td>12.2% p = 0.82</td>
<td>2.2% p = 0.65</td>
</tr>
<tr>
<td>Coons et al, 2020</td>
<td>1840</td>
<td>VTE</td>
<td>100-300</td>
<td>(> 40 ~ 43-45%)</td>
<td>DOAC (D, R, A) Warfarin</td>
<td>6.5% p = 0.93</td>
<td>1.7% p = 0.31</td>
</tr>
</tbody>
</table>

D = Dabigatran R = Rivaroxaban A = Apixaban
DOAC Drug Selection

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Dabigatran</th>
<th>Rivaroxaban</th>
<th>Apixaban</th>
<th>Edoxaban</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-oral therapy</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspepsia or GI issues</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GI bleed</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓ (low dose)</td>
</tr>
<tr>
<td>Significant CAD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Poor compliance with BID dosing</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CrCl < 30 mL/min</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DOAC Monitoring

<table>
<thead>
<tr>
<th>Resource</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Heart Rhythm Association Non-valvular Atrial Fibrillation Guidelines (2015)</td>
<td>“Patients should return on a regular basis for ongoing review...preferably after 1 month initially and later every 3 months”</td>
</tr>
<tr>
<td>ACC/AHA/HRS Atrial Fibrillation Guidelines (2019)</td>
<td>“Renal function and hepatic function should be evaluated before initiation of a [DOAC] and should be re-evaluated at least annually”</td>
</tr>
<tr>
<td>ASH VTE Guidelines (2018)</td>
<td>• For patients with a CrCl > 50 ml/min receiving DOAC therapy, renal function should be monitored every 6-12 months</td>
</tr>
<tr>
<td></td>
<td>• For patients with a CrCl < 50 ml/min receiving DOAC therapy, renal function should be monitored every 3 months</td>
</tr>
</tbody>
</table>

Joint Commission’s National Patient Safety Goal 03.05.01
Reduce the likelihood of patient harm associated with the use of anticoagulant therapy
OSUWMC Pharmacy Anticoagulation Management Services

ANTICOAGULATION Centers of Excellence

7 sites, hospital and outpatient
Pharmacist-run
Collaborative and personalized care
DOAC, LMWH, warfarin management
Patient education
Quality monitoring and clinical outcomes

For more information:
https://wexnermedical.osu.edu/heart-vascular/clinical-pharmacist-services/anticoagulation-management

Summary: DOAC Double-Check!

✓ • Double-check the indication
D • Drug-Drug Interactions
O • Organ Function
A • Adjustments
C • Counsel!

ATRIUM Cardiology Collaborative.
Objectives

- Describe the role of aspirin and oral P2Y$_{12}$ inhibitors for patients with stable ischemic heart disease (SIHD) or acute coronary syndromes (ACS) with or without percutaneous coronary intervention (PCI)

- Evaluate the advantages and disadvantages of the different P2Y$_{12}$ inhibitors
Epidemiology

- Chest discomfort most frequent reason for ED visits
- Coronary heart disease kills about 360,000 per year
- Each year ~ 112,000 people die of a myocardial infarction
- Estimated annual incidence is 605,000 for new heart attacks and 200,000 recurrent heart attacks. Of these ~ 170,000 silent attacks.
- Myocardial infarction ($12.1 billion) and coronary heart disease ($9 billion) are 2 of the 10 most expensive conditions treated in US hospitals in 2013
- About every 40 seconds an American will suffer a heart attack

Case # 1

62 YO F admitted to the Emergency Department (ED)
- Abdominal pain and nausea. A couple of days before she took a test capsule for GI study.
- Sudden urge to have a bowel movement.
- In bathroom had sudden onset of severe chest pain
 - EKG showed ST-elevation

PMH:
CAD – LAD stent (unknown type) 2016
Hyperlipidemia
Chronic diarrhea

PSH:
Cholecystectomy 1992
Case # 1

- Patient instructed to stop both clopidogrel (Plavix) and aspirin 9 days prior to GI workup

- STEMI alert
 - Acute thrombosis of previous LAD stent

 Left heart catheterization with successful thrombectomy and balloon angioplasty

Case # 2

57 YO M
- Admitted for an elective urology procedure

PMH
CAD with a history of 3 cardiac stents (unknown type) in 2017
Peyronie’s and Erectile Dysfunction

PSH
Colonscopy

Post Procedure
Chest Pain and diaphoresis

EKG showed ST-elevation

Emgrent cath - 100% thrombotic occlusion of prox and mid RCA at site of previous stents
S/P thrombectomy and PCI with bare metal stent placement x 3

Patient instructed to discontinue aspirin for 10 days prior to procedure
Stent Evolution: Restenosis vs Stent Thrombosis

First Generation DES
Restenosis 5 – 15%

Second Generation DES
Restenosis < 5%

Risk of Mortality
Stent Thrombosis versus Bleeding

Mortality associated with stent thrombosis
Drug Eluting Stents: 17 - 45%
Bare Metal Stents: 9 - 21%

Mortality associated with bleeding after PCI at 12-24 months
7.3 - 13%
Essentials of Thrombosis

1. Tissue Factor
 1. Plasma Clotting cascade
 2. Prothrombin
 1. Factor Xa
 2. Thrombin
 1. Fibrinogen
 2. Fibrin

2. Collagen
 1. TXA₂
 2. ADP
 3. Platelet activation
 4. Platelet aggregation

Sites of Antithrombotic Action

1. Tissue Factor
 1. Plasma Clotting cascade
 2. Prothrombin
 1. Factor Xa
 2. Thrombin
 1. Fibrinogen
 2. Fibrin

2. Collagen
 1. TXA₂
 2. ADP
 3. Platelet activation
 4. Platelet aggregation

- **Antithrombotic Agents**
 - Aspirin
 - Clopidogrel
 - Prasugrel
 - Ticagrelor
 - Bivalirudin
 - LMWH
 - Heparin
 - LMWH
 - AT
 - Thrombolytics
 - GP IIb/IIIa Inhibitors

- **Thrombolytics**
- **GP IIb/IIIa Inhibitors**
- **LMWH**
P2Y₁₂ Inhibitor Comparison

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel</th>
<th>Prasugrel</th>
<th>Ticagrelor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loading Dose</td>
<td>300-600 mg</td>
<td>60 mg</td>
<td>180 mg</td>
</tr>
<tr>
<td>Maintenance Dose</td>
<td>75 mg daily</td>
<td>10 mg daily</td>
<td>90 mg BID</td>
</tr>
<tr>
<td>Prodrug</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Reversible</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Metabolism</td>
<td>CYP 2C19</td>
<td>CYP 3A, 2B6</td>
<td>CYP 3A</td>
</tr>
<tr>
<td>Time to 50% Platelet Inhibition (min)</td>
<td>120-240 (600 mg)</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Maximal Platelet Inhibition (%)</td>
<td>35</td>
<td>79</td>
<td>88</td>
</tr>
</tbody>
</table>

Mechanism of Action of P2Y₁₂ Inhibitors

1. **ADP** stimulates the **GP IIb/IIIa** receptor, attracting **Fibrinogen** and leading to platelet aggregation.
2. **Clopidogrel** and **Prasugrel** bind to the **P2Y₁₂ Receptor**, inhibiting platelet aggregation.
3. **Ticagrelor** directly inhibits the **GP IIb/IIIa** receptor, preventing platelet aggregation.
Dual Antiplatelet Therapy (DAPT) Recommendations

Bare metal stent for Acute Coronary Syndromes
- Aspirin 81 mg by mouth daily uninterrupted lifelong
- Clopidogrel 75mg daily or prasugrel 10mg daily or ticagrelor 90mg twice daily for a **minimum of 1 month** (Class II) **ideally at least 12 months** (Class I)

Drug eluting stent for Acute Coronary Syndromes
- Aspirin 81 mg by mouth daily uninterrupted lifelong
- Clopidogrel 75mg daily or prasugrel 10mg daily or ticagrelor 90mg twice daily for a **minimum of 6 months** (Class II) **ideally at least 12 months** (Class I)

Bare metal stent for Stable Ischemic Heart Disease
- Aspirin 81 mg by mouth daily uninterrupted lifelong
- Clopidogrel 75mg daily for a **minimum of 1 month** (Class I) **consider up to 12 months** (Class II)

Drug-eluting stent for Stable Ischemic Heart Disease
- Aspirin 81 mg by mouth daily uninterrupted lifelong
- Clopidogrel 75mg daily for a **minimum of 3-6 months** (Class I) **consider up to 12 months** (Class II)

Medical management of Acute Coronary Syndromes
- Aspirin 81 mg by mouth daily uninterrupted lifelong
- Clopidogrel 75 mg daily or Ticagrelor 90 mg twice daily for **ideally at least 12 months** (Class I)

Find the Balance

<table>
<thead>
<tr>
<th>Increased Ischemic Risk/Risk of Stent Thrombosis</th>
<th>Increased Bleeding Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced age</td>
<td>Advanced age</td>
</tr>
<tr>
<td>Acute coronary syndrome presentation</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>Extensive coronary artery disease</td>
<td>History of prior bleeding</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Oral anticoagulant therapy</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>Female sex</td>
</tr>
<tr>
<td>Prior myocardial infarction</td>
<td>Low body weight</td>
</tr>
<tr>
<td>Prior stent thrombosis</td>
<td>Chronic kidney disease</td>
</tr>
<tr>
<td>Heart failure</td>
<td>Liver disease</td>
</tr>
<tr>
<td>Current smoker</td>
<td>Anemia</td>
</tr>
<tr>
<td>Multi-vessel disease</td>
<td>Chronic steroid or NSAID therapy</td>
</tr>
<tr>
<td>Stent undersizing or underexpansion</td>
<td></td>
</tr>
<tr>
<td>Small stent diameter</td>
<td></td>
</tr>
<tr>
<td>Long stent length (>60 mm)</td>
<td></td>
</tr>
<tr>
<td>Short stent length (<3mm)</td>
<td></td>
</tr>
<tr>
<td>Bifurcation stents</td>
<td></td>
</tr>
<tr>
<td>in-stent restenosis</td>
<td></td>
</tr>
<tr>
<td>Multiple stents (≥ 3 stents)</td>
<td></td>
</tr>
<tr>
<td>First-generation drug-eluting stent</td>
<td></td>
</tr>
</tbody>
</table>

Levine GN. Circulation 2016;68:1082-1115
Tools to find the balance

<table>
<thead>
<tr>
<th>Time of use</th>
<th>PRECISE-DAPT Score</th>
<th>DAPT Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>At time of coronary stenting</td>
<td>Short DAPT (3-6 months) vs Standard/long DAPT (12-24 months)</td>
<td>After 12 months of uneventful DAPT vs Standard DAPT (12 months) vs Long DAPT (30 months)</td>
</tr>
</tbody>
</table>

Score calculator

<table>
<thead>
<tr>
<th>Score range</th>
<th>Decision making cut-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 100 points</td>
<td>≥25 → 3-6 months of DAPT <25 → 12-24 months of DAPT</td>
</tr>
<tr>
<td>-2 to 10 points</td>
<td>≥2 → Long DAPT <2 → Standard DAPT</td>
</tr>
</tbody>
</table>

Score factors
<table>
<thead>
<tr>
<th>Score Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Limitations
- Clopidogrel 88%
- Validated in PLATO cohort (Ticagrelor)
- Excluded patients on long term anticoagulation

Benefits of DAPT in Acute Coronary Syndromes

<table>
<thead>
<tr>
<th>Study</th>
<th>Indication</th>
<th>Duration (months)</th>
<th>Antiplatelet Therapy</th>
<th>Incidence of Primary Composite Endpoint* (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURE</td>
<td>ACS</td>
<td>12</td>
<td>Aspirin vs Aspirin + Clopidogrel</td>
<td>11.4 vs 9.3 p<0.001</td>
</tr>
<tr>
<td>Triton-TIMI 38</td>
<td>ACS/PCI</td>
<td>15</td>
<td>Aspirin + Clopidogrel vs Aspirin + Prasugrel</td>
<td>12.1 vs 9.9 p<0.001</td>
</tr>
<tr>
<td>PLATO</td>
<td>ACS</td>
<td>12</td>
<td>Aspirin + Clopidogrel vs Aspirin + Ticagrelor</td>
<td>11.7 vs 9.8 p<0.001</td>
</tr>
</tbody>
</table>

*Primary Composite Endpoint – Death from Cardiovascular (CV) Causes, Non-fatal myocardial infarction (MI) or Non-fatal stroke

References:
Risks of DAPT in Acute Coronary Syndromes

<table>
<thead>
<tr>
<th>Study</th>
<th>Indication</th>
<th>Duration</th>
<th>Antiplatelet Therapy</th>
<th>Incidence of Major Bleeding (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CURE</td>
<td>ACS</td>
<td>12</td>
<td>Aspirin vs Aspirin + Clopidogrel</td>
<td>2.7 vs 3.7 p=0.001</td>
</tr>
<tr>
<td>Triton-TIMI 38</td>
<td>ACS/PCI</td>
<td>15</td>
<td>Aspirin + Clopidogrel vs Aspirin + Prasugrel</td>
<td>1.8 vs 2.4 p=0.03</td>
</tr>
<tr>
<td>PLATO</td>
<td>ACS</td>
<td>12</td>
<td>Aspirin + Clopidogrel vs Aspirin + Ticagrelor</td>
<td>2.2 vs 2.8 p=0.03</td>
</tr>
</tbody>
</table>

These rates are under the umbrella of a clinical trial NOT real world

Patients who require oral anticoagulation are excluded

P2Y$_{12}$ Recommendations in Acute Coronary Syndromes

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>COR</th>
<th>LOE</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is reasonable to choose ticagrelor over clopidogrel in ACS patients treated with an early invasive strategy and/or PCI.</td>
<td>IIa</td>
<td>B-R</td>
</tr>
<tr>
<td>It is reasonable to choose prasugrel over clopidogrel in ACS patients who undergo PCI who are not at high risk for bleeding complications.</td>
<td>IIa</td>
<td>B-R</td>
</tr>
<tr>
<td>In ACS patients managed with medical therapy alone (without revascularization or fibrinolytic therapy) treated with DAPT, it is reasonable to use ticagrelor in preference to clopidogrel.</td>
<td>IIa</td>
<td>B-R</td>
</tr>
<tr>
<td>Prasugrel should not be administered to patients with a prior history of stroke or TIA.</td>
<td>III: Harm</td>
<td>B-R</td>
</tr>
</tbody>
</table>

Levine GN. Circulation 2016;68:1082-1115
Factors Preventing Continuation of Ticagrelor

- Side Effects: Dyspnea, Bradycardia
- Drug Interactions: 3A4 Inducers, P-glycoprotein
- Indication for Oral Anticoagulation: Triple Therapy (Limited data)
- Patient Adherence: Once vs Twice Daily
- Cost: Insurance

Drug Interactions with Ticagrelor

- Ticagrelor is metabolized by CYP 3A
- Weak CYP 3A inhibitor

<table>
<thead>
<tr>
<th>Strong CYP 3A inhibitors</th>
<th>CYP 3A inducers</th>
<th>CYP 3A substrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiretrovirals</td>
<td>Carbamazepine</td>
<td>Cyclosporine</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>Rifampin</td>
<td>Tacrolimus</td>
</tr>
<tr>
<td>Ketoconazole</td>
<td>Phenytoin</td>
<td>Amlodipine</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>Dexamethasone</td>
<td>Diltiazem, Verapamil</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>Phenobarbital</td>
<td>Ator, simva, lovastatin</td>
</tr>
</tbody>
</table>

Simvastatin and lovastatin doses limited to no more than 40 mg

- Ticagrelor and active metabolite are P-glycoprotein (PgP) substrates and weak inhibitors PgP
 - Monitor digoxin levels
 - Dabigatran
Switching Between P2Y12 Inhibitors

Conclusions

- Understanding the current recommendations for DAPT is critically important.
- Early discontinuation of DAPT is problematic.
- Patients should remain on at least one antiplatelet medication following stent placement.
- Patient education is key.
 - Pharmacists can be instrumental in providing this education.
- Work together with the patients cardiologist to ensure safe transitions of care.