Diabetic Foot Wound

Said Atway, DPM, FACFAS
Associate Professor-Clinical
Department of Orthopaedics
The Ohio State University Wexner Medical Center

“Diabetic foot” variety of pathological conditions that might affect the feet in patients with diabetes (Boulton 2002)
Team Approach

• Expedited referral and care
• Madagin program proven to decrease amputations 82%
 • Driver et al. Diabetes Care 2005
• Swedish study decreased amputations 71% over 11 years
 • Wennberg et al Diabetes research 2019
• UK study 40% reduction and 62% reduction in major amputations
• **Prevalence**

 – 29.1 Million people 9.3% of the US 2012
 • CDC
 – 2.8% Worldwide 2000 (171 million)
 • WHO

Amputations

– 73,000 non-traumatic amputations in diabetics 2010
• CDC

Cost

– $4,595 per ulcer and $28,000 >2 years
– $5 billion per year annually
 • *Clin Ther* 1998
– $30-50k amputation according to president
Foot Infections

- Any infra-malleolar infection in a person with diabetes
- Common and costly problem
 - DM related amputation cost 3B per year
 - *Diabetes Care 2003*
- Most common reason for a diabetic to be admitted
 - *National Hospital Discharge Data*
- Most common non-traumatic cause of amputation
 - 60% of LEA
 - Most common cause of nontraumatic lower extremity amputation
 - *Lancet 2005*
Importance of Diabetic Wound care

• Diabetic foot ulcers present >4 weeks have a 5 fold higher risk of infection

• Infection in a foot ulcer increases the risk for hospitalization 55.7 times and risk for amputation 155 times

• 5 year mortality after limb amputation is 68%
 • NIH publication 1995
The FDA defines a healed wound as reepithelialized skin without drainage or dressing requirements confirmed at 2 consecutive visits 2 weeks apart.

Guidance for Industry
Chronic Cutaneous Ulcer and Burn Wounds — Developing Products for Treatment

Clinical Practice Guidelines
• Management of etiologic factors
 – Adequate perfusion
 • PAD (Twice as common in DM)
 • Gregg et al 2004
 Rarely lead to ulcer directly
 Contributes to 50% of ulcers
 Diabetes Metab 2008
 – Debridement
 • Sharp debridement of infection
 • Urgent for gas/necrotizing infection
 – Infection Control
 • IDSA guidelines
 – Pressure Mitigation
 • Offloading
 • Total contact cast
Vascular work up

- ADA recommendations:
 - ABI >50y DM
 - <50y with risk factors
 - Smoking
 - HTN
 - Hyperlipidemia
 - >10years DM
 - Anyone with PAD symptoms

- Dependent rubor
- Pallor on elevation
- Absence of hair growth
- Dystrophic nails
- Cool/Dry/Fissured skin
 - Diabetes Care 2003
Deformity

• Pathophysiologic mechanism complex
 — Neuropathy
 — Repetitive trauma
 — Focal tissue ischemia
 — Tissue Destruction

• Foot deformities
 — Charcot
 • Neuroarthropathy

• Limited joint mobility
 — Glycosylation of soft tissue

Wound Evaluation

• Size
 — % reduction early predictor of outcome

• Location
 — WB surface
 — Digits
 — Heel
 — Legs

• Shape
 — Margolins

• Depth
 — Deep tissue involvement

• Base
 — Necrotic/Fibrotic/Granular

• Border
 — Abnormal

• Probe
 — 89% Probe to bone

• Xrays
 — Free air/foreign body

• Infection
 — Advanced imaging work up
Orthopaedic Wound Care
Management of osteomyelitis and bone infection

Anne Sullivan, MD
Assistant Professor - Clinical
Department of Orthopaedics
The Ohio State University Wexner Medical Center

Why Orthopaedic Wound care?

• Things may not be as they appear…..
• Bone Expertise provides a margin for safety
• Bone Debridement without Expertise
 • May Compromise Structural integrity
 • May Fail to Eradicate infection
• Bone Debridement without Coverage
 • Exposes previously Protected area to Environment
 • May Promote Deeper Infection
• Biopsy techniques Must Avoid Contaminating deeper bone –
 Metaphyseal or Medullary bone.
• **Red flag: Persistent Draining Wound despite Meticulous care**
• What Lies Beneath…..
 • As many as 64% Diabetic Foot infections involve Bone
 • Foreign material and Necrotic bone harbor Biofilm
 • Granulation tissue Obscures, does Not Protect underlying
 Structures from Environment
 • Proper use of Imaging/X-rays is Essential
Osteomyelitis = Infection involving bone

- Timing: acute or chronic
- Organisms: Staphylococcus aureus
 - Most common, can be any organism
- Causes/examples: (may be acute or chronic)
 - Direct contamination – bone contacts environment—
 - Open Fracture
 - Penetrating Trauma
 - Stage 4 ulcer
 - Animal or Human bite
 - Contiguous spread – from Local wound or abscess,
 - Diabetic Foot wound, Pressure ulcer, Paronychia, Injection Related abscess
 - Infected Fixation Hardware or Prosthetic Joint Infection (PJI)
- Hematogenous seeding from Remote source
 - Endocarditis, Pyelonephritis,
 - Infections related to Injected Drug use

Osteomyelitis
Cierny-Mader Classification/Factors (1980’s)

- Location of infection in Bone:
 - 1. Medullary
 - 2. Superficial
 - 3. Localized
 - 4. Diffuse

- Type of Host:
 - “A”: Healthy Host
 - normal healing potential
 - “B”: Compromised Host
 - Systemic or Local Factors
 +/- Correctable ??
 - “C”: Debilitated host:
 - Treatment is worse than Disease

- Systemic (s):
 - Organ failure (renal, hepatic)
 - Malnutrition,
 - Diabetes Mellitus
 - Chronic Hypoxia
 - Extremes of Age
 - Immune disease
 - Immune compromise
 - Malignancy

- Local (l):
 - Vascular disease, stasis, lymphedema
 - Scarring, radiation fibrosis
 - Neuropathy
 - Small vessel disease
 - Tobacco abuse

Treatment Strategies:
Wound Closure efforts may require any or all to succeed

- Recognize Source and remove Bioburden
 - Assessment, Imaging, Irrigation, Debridement, Bone Resection
- Protect bone
 - Avoid Further and Repeat contamination
 - Maintain or Restore Structural integrity of bone, joint, tendon, ligament
 - **May Require Advanced Orthopaedic Reconstruction**
 - Antibiotics: IV, Oral, Local delivery (beads), Antimicrobial dressings
 - Avoid spread: Coverage/ closure, Blood supply, Dressings, Control pathogens
- Optimize healing potential—Improve host
 - Oxygen, Nutritional resources for Healing,
 - Decrease Size of wound—, Negative pressure, Bone resection, Flap/Graft
- Address Soft tissue Issues
 - Control Medical Factors (optimization)

No Tobacco

Late effects of open tibia plateau fracture:
- plain X-ray and CT showing foreign body, sclerotic dead bone, and defect
- Plain x-ray: 2 stage reconstruction

MRI proximal tibia: showing metal artifact = wrong study!

IMAGING USE IN CLINICAL SCENARIO
Typically, General Surgery deals with the abdomen, so this is what we deal with in Wound Care as well. Most of what I am seeing in wound care is chronic abdominal wounds. This often has to do with infected prosthetics such as hernia mesh that are involved in patient care in the past. Also help with colostomy creation for help in healing sacral wounds.
Laparoscopic Loop Colostomy

• Diverts stool to the abdominal wall through a stoma
• Helps clean up perineum, allows for complex wound closure of sacral wounds
• Can be temporary, or permanent, depending on patient preference
Wound Care

• With a team approach, we can offer our patients a full breadth of options for wound care
• Having Plastic Surgery, Orthopedics, and General Surgery gives patients the best chance of healing their wounds
• Our nursing staff is very experienced, and helps get patients ready for surgery if it is indicated.

Case Presentations on Various Wound Etiologies

Nancy Hale, APRN, CNP
Comprehensive Wound Center
The Ohio State University Wexner Medical Center
Wound Center Provider

Dermatology
Nutrition
Vascular
Surgical services
ID

PT
Endocrinology

Rheumatology

Endocrinology

PMR

Pyoderma
Stage 4 Pressure Injury

Arterial Wound
Malignant Melanoma

Advanced Wound Care at the New OSU Wound Center

Rajiv Chandawarkar, MD
Director of OSU WOUND CARE
Director Plastic Surgery, The Ohio State University Wexner Medical Center
East Hospital
Professor of Plastic Surgery, Department of Plastic Surgery
The Ohio State University Wexner Medical Center
Disclosures

I have no disclosures

New OSU Wound Center
What is Advanced Wound Care

Wound care professionals should select the appropriate wound management system based on:
1) Published clinical evidence;
2) Contribution to providing the best outcomes at the total lowest cost of care, and
3) Comprehensive multidisciplinary care model with highly specialized care.

We offer the most advanced treatment for nonhealing and hard-to-heal wounds, including hyperbaric oxygen therapy, surgical and microsurgical reconstruction, advanced use of biologics and new emerging technology.
Referral to Wound Center

<table>
<thead>
<tr>
<th>Good Wound Care</th>
<th>Advanced Wound Care</th>
</tr>
</thead>
<tbody>
<tr>
<td>History</td>
<td>Hyperbaric Medicine</td>
</tr>
<tr>
<td>Assessment</td>
<td>Growth Factors</td>
</tr>
<tr>
<td>Debridement</td>
<td>Bioengineered Tissues</td>
</tr>
<tr>
<td>Warm, Moist Environment</td>
<td>Negative Pressure Therapy</td>
</tr>
<tr>
<td>Offloading</td>
<td>Biologic Dressings</td>
</tr>
<tr>
<td>Topical Care</td>
<td>Active Topicals</td>
</tr>
<tr>
<td></td>
<td>Plastic Surgery</td>
</tr>
<tr>
<td></td>
<td>Curative Surgery</td>
</tr>
</tbody>
</table>

Wound Care Documentation

DESCRIBE WHAT YOU SEE!

Note the percentages

Is there odor, is there pus, is there drainage?

Describe the periwound
- Bleeding, moist, intact, red, hot, swollen, dry, cracked

Note your intervention
- What did you put on the wound?
New OSU wound care center

Principles of Advanced Wound Care

- Differentiate between acute wounds and the development of chronic wounds.
- Identify risk factors for chronic wound development.
- Identify the four most common type of chronic wounds: pressure injury and venous, arterial, and diabetic ulcers.
- Discuss the development of biofilm and the role it plays in wound chronicity.
- Apply the concepts of DIME+S
 – Debridement, Inflammation Control, Moisture management, Edge effect AND Surgery (when indicated)
Wound Preparation Model

Chronic Wound

- **Rx Cause**
- **Patient Centered Concerns**
- **Local Wound Care**

Debridement
- **Infection Inflammation**
- **Moisture Balance**
- **Edge Effect**

Surgery When Indicated

DEBRIDEMENT

Why is it necessary?

- Necessary to convert a chronic wound into an acute wound
- Keeps the wound in the active phases of healing
- Removes nonviable/infected tissue and bioburden
- Types of debridement: autolytic, enzymatic, sharp, mechanical
DEBRIDEMENT
Why is it necessary?

Inflammation and Infection Control
What Does it Do?

<table>
<thead>
<tr>
<th>Critically colonized</th>
<th>Deep wound infection</th>
<th>Systemic infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonhealing</td>
<td>Site bigger</td>
<td>Fever</td>
</tr>
<tr>
<td>Exudative</td>
<td>Temperature increased</td>
<td>Rigors</td>
</tr>
<tr>
<td>Red and bleeding</td>
<td>Os (probes to or exposed bone)</td>
<td>Chills</td>
</tr>
<tr>
<td>Debris</td>
<td>New areas of breakdown</td>
<td>Hypotension</td>
</tr>
<tr>
<td>Smell</td>
<td>Exudate, Erythema,</td>
<td>Multiple organ failure</td>
</tr>
<tr>
<td></td>
<td>Edema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smells</td>
<td></td>
</tr>
</tbody>
</table>

TX: Topical Systemic Systemic
Infection – shades of grey

Management of Moisture Tips and Tricks
Edge Effect:
The Benefits of a Contact Layer

Non-adherent, atraumatic
Porous mesh structure
Can stay on wound for many days, changing secondary dressing over contact layer

Edge Effect:
Choosing the Right Dressings

<table>
<thead>
<tr>
<th></th>
<th>Hydrogel</th>
<th>Honey</th>
<th>Foam</th>
<th>Alginate</th>
<th>Contact Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epithelial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granulated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exudative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slough</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eschar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Silver can be added into hydrogel, foam, alginate, and contact layer as needed.

Bordered foams can be used over hydrogel, honey, silver, alginate, contact layers.
Overall Cost-Awareness

Complicated by many factors:
- Insurance coverage
- Quality of life
- Economic constraints
- Rising health care costs - labor and materials

Cheaper wound management does not necessarily = cost savings
- For example, if the dressing costs more but reduces time to wound healing, decreases length of stay, reduces the frequency of dressing changes, and/or decreases the need for analgesia with dressing changes, then it may actually mean overall cost savings

Surgical Closure
Pre-op Evaluation

• **History:**
 – Cardiac, pulmonary, endocrine, oncologic

• **Location:**
 – Depth, volume
 – Involvement of adjacent structures
 • Bone, Joint, sinus

• **Quality:**
 – Vascularity
 – Presence of scarring
 – Extent of infection
 • Cellulitis, Heavy bacterial count, C/S

Pre-op Evaluation

• **Nutritional status**
 – Cachexia, anemia

• **Musculoskeletal status**
 – Spasms, fixed contractures

• **Distant infection**
 – Urinary, pulmonary, other

• **General status**
 – Neurologic/psychiatric
 • Coma, disorientation
 • Schizophrenia, depression
 • Social support system
Methods of Surgical Closure

- Primary closure
- Skin graft
- Pedicle flap: muscle, musculocutaneous, fasciocutaneous
- Free tissue transfer

Sacral Ulcer Closure

- primary closure
- superior gluteus muscle
- gluteal fasciocutaneous
- gluteal turnover
- reverse dermal graft
- V-Y advancement
- paraspinous based perforator flap
Sacral Ulcer

Sacral Ulcer
Ischial Ulcer Closure

- primary closure
- **posterior thigh**
- inf. gluteal muscle
- gracilis
- biceps femoris & skin

- hamstring
- **tensor fascia lata** & vastus lateralis
- lateral thigh
- rectus abdominus

Ischial Ulcer
Ischial Ulcer

Ischial Ulcer
Trochanteric Ulcer Closure

- random fasciocutaneous
- TFL
- TFL V-Y
- sensate TFL
- TFL w/ skin island

- gluteus medius & TFL
- vastus lateralis
- gluteus maximus, distally based
- gluteal thigh flap
- expansive gluteus max.
Trochanteric Ulcer

Posterior thigh flap
Fillet (Leg Amputation) Flap

- Hip disarticulation & fillet flap
- High complication rate - OR blood loss, infection, sinus tract, dehiscence, femoral stump rotation
- Hemicorporectomy: For extensive infection, very morbid
What does ‘FUNCTIONAL RESTORATION’ mean?

Functional Restoration
The FIVE CARDINAL QUESTIONS

Can the patient ambulate easily?

Can she/he resume their original work? If not can they find new work suitable to their ‘NEW’ limb function?

Is the reconstruction robust enough for continued wear and tear?

Are recurrence rates of diabetic foot wounds lowered?

Is the patient able to manage his diabetic target organ disease?
Functional Restoration
The FIVE ESSENTIAL TOOLS

Accurate functional preoperative assessment

Diabetic (and other comorbid) control

System Structures: *The Iceberg Metaphor*

Well-defined Surgical Plan

Acute Postoperative Management

SURGICAL PLAN: Reconstructive Choices Are A Plenty

11 muscles, abundant adipofascia, three blood vessels, multiple perforators, superficial, deep and venae comitantes, one expendable bone. Coupled with great orthotics, and the ability to supercharge
Functionalized Reverse Sural Fasciocutaneous Flap

Reverse Sural FascioCutaneous Flap

Sural And Saphenous Vessels

Vasanervosum and Vasovasorum may play a role (controversial)

Deep fascia is included

Great for Achilles Repair
Funtionalized Reverse Sural Fasciocutaneous Flap
Funtionalized Reverse Sural Fasciocutaneous Flap - Transfer

Funtionalized Reverse Sural Fasciocutaneous Flap - Inset
Currently, this patient walks without support, drives, and has resumed her job as a school teacher.
Calcaneal reconstruction with microvascular double/single barrel fibula osteocutaneous flap

Background

Calcaneal destruction commonly occurs in diabetics - usually necessitates a below-knee amputation since the central weight-bearing mechanism is lost and reconstructive choices are limited. Here we present two cases of calcaneal reconstruction, using double/single-barreled fibular osteocutaneous free flaps.
Currently, this patient walks without support and has resumed his job as a supervisor in a tree-cutting agency.
Currently, this patient walks without support and has resumed his job as a short-distance truck driver. He even takes his Harley out, once in a while!
Reverse Peroneus Brevis Flap

Reverse Peroneus Brevis Flap
New OSU wound care center

• Strong commitment by the members of the multidisciplinary team
• Physical space and financial support from the sponsoring institution
• Performance metrics, Quality measures
• Data Management and Support
• Technology
• Partnership with an OutPatient Community
• Actionable Knowledge
• CoMarket Expansion
• Defined Drivers of Care and Patient Volumes