Prevention of Surgical Site Infections

Madhuri M. Sopirala, MD
The Ohio State University Medical Center

Surgical Site Infections (SSI)

- 800,000-1,400,000 surgical site infections complicate ~ 40 million procedures annually in the US
- Account for 38% of all nosocomial infections in the United States each year
- Infections result in longer hospitalization and higher costs

Adverse Clinical and Economic Outcomes Attributable to Surgical Site Infections

Cohort Study

Outcome	Uninfected control subjects	Patients with MSSA SSI	Patients with MRSA SSI	p
Death, no. (%) of patients	4 (1.5)	11 (3.5)	26 (9.1)	0.44
Total length of hospitalization, median days (IQR)	5 (3-9)	14 (2-25)	25 (10-38)	<0.001
Wound infection	NA	16 (5.3)	16 (17.3)	NA
Other infection	NA	16 (5.3)	16 (17.3)	NA

NOTE: IQR, interquartile range; MSSA, methicillin-sensitive Staphylococcus aureus; MRSA, methicillin-resistant S. aureus.

CDC Classification of Surgical Site Infection

- Superficial Incisional SSI
 - Skin
 - Subcutaneous Tissue
 - Deep Soft Tissue (Muscle & vessels)
- Deep Incisional SSI
- Organ/Space SSI

National Nosocomial Infections Surveillance (NNIS) System

Microbiology of SSIs

<table>
<thead>
<tr>
<th>Year</th>
<th>Pathogen</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986-1989</td>
<td>Staphylococcus aureus</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>Enterococcus</td>
<td>12%</td>
</tr>
<tr>
<td>1990-1996</td>
<td>Staphylococcus aureus</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas aeruginosa</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>Enterococcus</td>
<td>14%</td>
</tr>
</tbody>
</table>

Typical Microbiologic Flora at Surgical Sites

<table>
<thead>
<tr>
<th>Operation</th>
<th>Likely Pathogens*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placement of all grafts, prostheses, or stents</td>
<td>Staphylococcus aureus, CO/NOS</td>
</tr>
<tr>
<td>Cardiac</td>
<td></td>
</tr>
<tr>
<td>Abdominal</td>
<td></td>
</tr>
<tr>
<td>Genitourinary</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Head and neck</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

*Staphylococcus will be associated with surgical site infections following all types of operations.
**CO/NOS: Coagulase-negative staphylococci
CO: Coagulase-positive staphylococci
NOS: Non-oxidase-remaining staphylococci

Pathogenesis of SSI

- Relationship equation
 \[\text{Dose of bacterial contamination} \times \text{Virulence} \]
- Resistance of host
- SSI Risk

Patient Characteristics Associated with Increased Risk of SSI

- Extremes of age
- Diabetes / perioperative hyperglycemia
- Concurrent tobacco use
- Remote infection at the time of surgery
- Obesity

Patient Characteristics Associated with Increased Risk of SSI

- Malnutrition
- Low preoperative serum albumin
- Concurrent steroid use
- Prolonged preoperative stay
- Prior site irradiation
- Colonization with *S. aureus*

Procedural Factors Associated with Increased Risk of SSI

- Inadequate OR ventilation
- Increased OR traffic
- Break in sterile technique and asepsis
- Perioperative hypothermia, hypoxia
- Poor surgical technique (poor hemostasis, tissue trauma)
- Improper use of flash sterilization of instruments

Procedural Factors Associated with Increased Risk of SSI

- Lack of preoperative antiseptic showering
- Shaving of site the night prior to procedure
- Use of razor for hair removal
- Improper preoperative skin preparation
- Improper antimicrobial prophylaxis
- Failure to timely redose antibiotics in prolonged cases

Prophylactic Antibiotic Use

Historical Aspects

- **1950s** - Nonrandomization, lack of blinding, faulty timing of initial antibiotic administration, prolonged antibiotic use, incorrect choices of antimicrobial agents, and inappropriate choices of control agents

- **1961** – Burke demonstrated the crucial relationship between timing of antibiotic administration and its prophylactic efficacy

- **1964** - Bernard and Cole reported successful use of prophylactic antibiotics in a randomized, prospective, placebo-controlled clinical study of abdominal operations on the gastrointestinal tract
Prophylactic Antibiotic Use

Historical Aspects

1970s - Qualitative and quantitative nature of the endogenous gastrointestinal flora in health and disease was appropriately defined

1980s and 1990s - Definitive recommendations concerning the proper approaches to antibiotic prophylaxis in surgery

Surgical Wound Classification

• Class I/Clean
• Class II/Clean-Contaminated
• Class III/Contaminated
• Class IV/Dirty-Infected

Clean surgery - neurosurgery, thoracic and cardiothoracic procedures

• Cefazolin
 ✓ Methicillin sensitive S. aureus,
 ✓ S. epidermidis, and
 ✓ Non-enterococcal strep
 ✓ E. coli
 ✓ Proteus
 ✓ Citrobacter koseri
 ✓ Klebsiella pneumoniae

Perioperative Antibiotics…

• Complex hepatobiliary and pancreatic procedures and in those patients who have internal or external hepatobiliary stents
 ✓ Consensus guidelines not available
 ✓ Ampicillin/sulbactam

Colin Surgery – Perioperative Antibiotics

• Cefoxitin
 ✓ Gram positives such as MSSA
 ✓ Aerobic Gram negatives such as E. coli, Klebsiella sp, Proteus, Morganella, Neisseria sp, Citrobacter, Serratia
 ✓ Gram negative anaerobes including B. fragilis

Common Misconception

• If a patient is already being treated with a β-lactam agent for a remote site infection, no additional parenteral prophylaxis is needed for a clean or a clean-contaminated procedure.

• Virtually no post antibiotic effect for β-lactam antimicrobials; No residual antibacterial effect is present in uninflamed tissues once the blood is cleared of the β-lactam.

Antibiotic Resistance

- Vancomycin is appropriate for
 - Surgical prophylaxis when prosthetic material/devices are to be implanted at institutions with high rates of MRSA infections
 - Patients with known MRSA colonization
- Linezolid, daptomycin, or tigecycline should not be used for prophylaxis; as they may be most useful for therapy.

Role of Mupirocin

- Among patients with *S. aureus* nasal carriage, the risk of a nosocomial *S. aureus* infection was significantly lower in the mupirocin recipients than those who received placebo
- Meta-analysis that included 3 randomized controlled trials and 4 before-after trials – in the non-general surgery trials, peri-operative intranasal mupirocin decreased the incidence of SSI

Impact of Timing of Antibiotic Prophylaxis

<table>
<thead>
<tr>
<th>Antibiotic Timing</th>
<th>SSI Incidence</th>
<th>Relative Risk</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-24 hours preop</td>
<td>3.8%</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>< 2 hours preop</td>
<td>0.6%</td>
<td>0.15</td>
<td><0.001</td>
</tr>
<tr>
<td>3 hours postop</td>
<td>1.4%</td>
<td>0.37</td>
<td>0.11</td>
</tr>
<tr>
<td>3-24 hours postop</td>
<td>3.3%</td>
<td>0.86</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Perioperative Antibiotics Timing of Administration

<table>
<thead>
<tr>
<th>Hours From Incision</th>
<th>Infection (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-3</td>
<td>1/4369</td>
</tr>
<tr>
<td>4-3</td>
<td>5/699</td>
</tr>
<tr>
<td>3-2</td>
<td>5/1009</td>
</tr>
<tr>
<td>2-1</td>
<td>2/180</td>
</tr>
<tr>
<td>1-0</td>
<td>1/41</td>
</tr>
<tr>
<td>0</td>
<td>1/47</td>
</tr>
<tr>
<td>1</td>
<td>15/441</td>
</tr>
</tbody>
</table>
Impact of Prolonged Antibiotic Prophylaxis

- 2,641 CABG patients
 - Grp 1 - < 48 hours of antibiotics
 - Grp 2 - > 48 hours of antibiotics
- SSI Rates
 - Grp 1 - 8.7% (131/1502)
 - Grp 2 - 8.8 % (100/1139)
- Antibiotic resistant pathogen - Grp 2
 - Odds Ratio 1.6 (95% CI: 1.1-2.6)

Timing of Initial Antimicrobial Dose

- Errors in timing: on call to the OR!!
 - Related to delays in transport or schedule changes
 - Led to suboptimal tissue and serum levels

Timing of Initial Antimicrobial Dose

- Goal: To achieve serum and tissue drug levels for the duration of the operation to exceed the minimum inhibitory concentration (MIC) for anticipated organisms
- Antibiotic delivery within 60 minutes prior to the incision is considered “Ideal Timing.”
- Vancomycin infusion should begin within 120 minutes before incision

Strategies to improve Ideal Window

- Nurses in the holding area administer the first dose
- Standing order (with surgeon agreement) on the computer generated operating room schedule.
- Delegating implementation of ordered antibiotic prophylaxis to the anesthesia team led to improved timing
Antimicrobial Dose and Duration

- Based on patient weight, body mass index
- Redose if the operation is still continuing two half-lives after the first dose to ensure adequate antimicrobial levels until the wound is closed
- For most procedures the duration of antimicrobial prophylaxis should be 24 hrs or less, with the exception of cardiothoracic procedures (48-72 hrs)

In Summary…

Remember to do this right:
- Antibiotics – right choice, right time, right duration, right dose

In addition to optimizing patient and procedural factors

Penicillin Allergy

- Craniotomies, laminectomies, carotid endarterectomies, mastectomies, hernia repair - Clindamycin alone is adequate.
- For ALL procedures where cefoxitin is recommended clindamycin plus gentamicin is recommended.

Prevention and Management of Surgical Site Infection

Steven M. Steinberg, M.D.
Professor of Surgery
The Ohio State University
Surgical Site Infection

- Definition - infections confined to the surgical wound or involving structures adjacent to the wound
 - 60-80% are incisional
 - 20-40% are adjacent - deep soft tissue, intraabdominal, etc.
- 2nd most frequent nosocomial infection
- Probably most important as a cause morbidity, mortality, and excess cost morbidity, mortality, and excess cost

Deep SSI – CDC Definition

- Infection occurs within 30 days of operation (1 year if implant)
- Infection involves deep soft tissues (fascia and/or muscle) of incision, and, at least one of the following:
 - Purulent drainage for deep wound but not organ space
 - Deep incision spontaneously dehisces or is opened by surgeon with either fever or localized pain/tenderness
 - Dx of deep SSI made by surgeon

Superficial SSI – CDC Definition

- Infection occurs within 30 days of operation
- Infection involves skin and subcutaneous tissue of the incision, and, at least one of following:
 - Purulent drainage from wound
 - Organisms cultured from aseptically obtained culture of superficial wound
 - At least 1 of the following – pain/tenderness, swelling, redness or heat AND incision opened by surgeon
 - Dx of superficial SSI by surgeon
- Does not include: stitch abscess, episiotomy incision, infected burn wound, infection that extends into deeper layers

Organ/Space SSI – CDC Definition

- Infection occurs within 30 days (or 1 year if implant)
- Infection involves any other part of the operative site except incision and at least one of following:
 - Purulence from drain
 - Organisms isolated from aseptically obtained sample from organ/space
 - Abscess in organ/space
 - Dx of organ/space SSI made by surgeon
Preoperative measures to reduce the risk of surgical wound infection are aimed at preventing microbial contamination of the wound and reducing host susceptibility

Prevention of SSI

- **Important quality indicator**
 - 2009 National Patient Safety Goal
 - CMS’s Surgical Care Improvement Program measures
- CMS to discontinue paying for care of SSI

NPSG 7E: Prevent SSI

- **Implementation Expectations for Requirement 7E**
 - Educate health care workers about SSI
 - Measure SSI rates, monitor compliance with best practices, evaluate effectiveness of efforts.
 - Provide SSI rate data and prevention outcome measures to key stakeholders
 - Implement policies and practices aimed at reducing the risk of SSI
 - Educate patients and their families about SSI prevention

- **Administer antimicrobial agents for prophylaxis according to standards and guidelines for best practices:**
 - Deliver intravenous antimicrobial prophylaxis within 1 hour before incision
 - Discontinue the prophylactic antimicrobial agent within 24 hours after surgery
- Shaving is an inappropriate hair removal method. If necessary, use clippers or depilatories
- Maintain optimal control of blood glucose levels during the peri-operative period
SCIP
- Administer prophylactic antibiotic within 60 minutes before incision is made
- Use an appropriate antibiotic(s)
- Discontinue prophylactic antibiotic within 24 hours
- Cardiac surgery patients to have blood sugar controlled by 0600 morning after surgery
- Appropriate hair removal at surgical site

Preoperative Measures to Reduce SSI
- Treatment of active infection elsewhere in body
- Preoperative duration of hospitalization
- Hair removal
- Bathing with anti-microbial soap
- Nutritional support
- Tapering steroids
- Stop smoking
- Weight loss

SSI Prevention
- Has focused on perioperative antibiotics
- Beginning to see other factors considered

Hair Removal
- All adults undergoing CABG 1988-1989
- Switched from preoperative shaving to clipping in January, 1989
- Deep sternotomy infections dropped from 1.2% to 0.2%
- Venectomy site infections decreased from 1.6% to 0.4%
Hair Removal

Alexander et al: Arch Surg, 1983

- 1013 patients randomized to shaving versus clipping either PM before or AM of operation
- AM clipping was associated with significantly fewer wound infections at discharge or 30 day follow up
- Estimated $270,000 savings/1000 patients compared to PM shaving

Preoperative Bathing

- Prospective, randomized trial of preoperative showering with:
 - Chlorhexidine gluconate
 - Povidone-iodine
 - Lotion soap
- Chlorhexidine significantly reduced colony counts of Staph at subclavian and inguinal swab sites at time of operation

Hair Removal

- Preoperative shaving versus no hair removal
- Clean operations
- Shaving - 2.7% wound infection rate
- No shaving - 1.3% wound infection rate

Preoperative Bathing

Lynch et al: J Hosp Infect, 1992

- 3482 patients randomized to chlorhexidine versus placebo shower 3 times prior to clean or clean-contaminated operations
- No difference in incidence of wound infection diagnosed either in the hospital or after discharge
 - > 60% of wound infections diagnosed after discharge
Prediction of Risk

- 1205 Cancer patients undergoing surgery
- 17.3% incidence of Surgical Site Infection
- Multivariate logistic regression - 6 independent factors:
 - Contaminated and infected operations
 - Operation > 280 minutes
 - Male gender
 - Prior radiotherapy
 - Anesthesia class III - V
 - Antimicrobial prophylaxis not according to protocol

Management of Superficial SSI

- Open wound
 - Almost always necessary to open entire wound
- Antibiotics for surrounding cellulitis

Blood Sugar Control in Diabetics

- 8910 patients undergoing cardiac surgery
 - 1585 were diabetic
- Sternal wound infection rate:
 - Diabetics: 1.7%
 - Non-diabetics: 0.4%
- Blood glucose > 200, obesity, and use of int. mammary art. all risk factors for SSI
- Institution of protocol to maintain glucose < 200 for first 2 postop days decrease SSI rate from 2.4% to 1.5%

Open Wounds

- Now that wound is open, what next?
- First rule – almost all acute wounds will heal NO MATTER WHAT you do to them
- Second rule – if an acute wound will not heal there is usually either undrained, underlying pus or a foreign material in the depths of the wound
- Third rule – dead tissue will not heal. Debride necrotic debris in wound
Non-Healing Acute Wounds

- Image body part to assess underlying tissue – CT, U/S
 - Underlying fluid collections must be assessed for infection, usually by aspiration or drainage
- Read operative report(s) to determine what is in wound
 - Permanent suture?
 - Mesh?

Open Wound

- Dressings
 - Saline soaked gauze
 - Betadine soaked gauze
 - All sorts of other materials have been used in wound – honey, sugar, silver-containing dressings, hydrocolloid, alginate, foam, hydrogels, hydrofiber, parrafin
- No good study shows quicker healing with one product over another

Retained Foreign Material

- Must be removed if wound is to heal
 - May be done in office under local anesthesia if dealing with a suture or two
 - May need to be done in operating room if anything more extensive

Vacuum-Assisted Dressings

- Has been shown useful in chronic wounds
 - Decreased time to healing
 - Decreased exudate
 - Decreased bacterial count
 - Thought to enhance healing by reducing tissue edema and improving blood flow
- In acute wounds, little evidence that vacuum-assisted dressing systems are associated with quicker healing, but they may be useful for other reasons