Endocarditis: Treatment & Prevention

Jeremy D. Young, MD, MPH
Division of Infectious Diseases

Overview

(I) Prevention
- Concept of antibiotic prophylaxis
- Updated 2007 AHA Guidelines

(II) Therapy
- Importance of bactericidal therapy
- Clinical scenarios
- Special pathogens
- New drugs and combinations

(III) Points about epidemiology & diagnosis

Clinical Scenario

- Patient with MVP scheduled to have wisdom teeth extracted. Has systolic murmur with mid-systolic click on exam. Gives vague history of rash with penicillin as a child. You should give:

(A) Oral clindamycin 60 minutes prior
(B) Oral amoxicillin 60 minutes prior
(C) IV ampicillin 30 minutes prior
(D) No antibiotic prophylaxis is required

Prophylaxis – The Concept
Frequency of Bacteremia

- Dental procedures: tooth extraction (10-100%), periodontal surgery (36-88%), teeth cleaning (up to 40%), & endodontic procedures (up to 20%)
- Routine: brushing & flossing (20-68%), use of toothpicks (20-40%), water irrigation devices (7-50%), & chewing food (7-51%)
- Average person <2 yearly dental visits, so risk much higher just from daily activities

Cumulative Risk of Bacteremia

- Guntheroth (Am J Cardiol, 1984) estimated cumulative 5370 minutes of bacteremia with 1 month chewing & brushing compared with 6-30 minutes after single tooth extraction
- Roberts (Pediatr Cardiol, 1999) estimated brushing twice daily for one year had 154,000 X risk of exposure compared to single tooth extraction...estimated 5.6 million X greater when including other daily activities

Primary Reasons for the Revision of the IE Prophylaxis Guidelines

- IE much more likely to result from frequent exposure to random bacteremias associated with daily activities than from bacteremia caused by a dental, GI tract, or GU tract procedure
- Prophylaxis may prevent exceedingly small number of cases of IE, if any, in individuals who undergo a dental, GI or GU tract procedure.
- Risk of antibiotic-associated adverse events exceeds the benefit, if any, from prophylactic antibiotic therapy.
- Maintenance of optimal oral health and hygiene may reduce the incidence of bacteremia from daily activities and is more important than prophylactic antibiotics for a dental procedure to reduce the risk of IE.

AHA Guidelines Revised – 2007

- Most IE not from invasive procedures but bacteremias from routine daily activities
- Previous recommendations based on scattered case reports, expert opinion, clinical experience, & descriptive studies
- Numerous publications over past 2 decades now bring efficacy into question
Cardiac Conditions Associated with the Highest Risk of Adverse Outcome from Endocarditis for which Prophylaxis with Dental Procedures is Reasonable

• Prosthetic cardiac valve or prosthetic material used for cardiac valve repair
• Previous IE
• Congenital heart disease (CHD)*
 - Unrepaired cyanotic CHD, including palliative shunts and conduits
 - Completely repaired congenital heart defect with prosthetic material or device, whether placed by surgery or by catheter intervention, during the first 6 months after the procedure
 - Repaired CHD with residual defects at the site or adjacent to the site of a prosthetic patch or prosthetic device (which inhibit endothelialization)
• Cardiac transplantation recipients who develop cardiac valvulopathy

Principles of Management

• Begin counting therapy on the first day of negative blood cultures – be sure you clear!
• Give bactericidal therapy (use a β-lactam if you can...give aminoglycoside in enterococcal endocarditis)
• Early consultation with cardiac surgeon if: AoV endocarditis, prosthetic valve, heart failure, other indications for surgery

Clinical Scenario

Underlying MVP. Blood cultures growing viridans group streptococci and has MV vegetation on TEE. NKDA.

Penicillin MIC = 0.5 μg/mL...give:
(A) Penicillin plus gentamicin
(B) Ceftriaxone alone
(C) Vancomycin plus gentamicin
(D) Vancomycin alone
α-Hemolytic Streptococci

- Viridans group & *Streptococcus bovis*
- Community-acquired endocarditis in non-IVDUs
- Some strains (e.g., *Abiotrophia*) more tolerant to penicillin
- Treatment based on penicillin MIC
- If highly-susceptible (MIC <0.12) use penicillin or ceftriaxone alone, but if intermediate (MIC 0.12 – 0.5) include gentamicin for 2 weeks.
Clinical Scenario

57 year old man presents with F/C & new murmur. TEE shows MV vegetation. Blood cultures X 3 grow:

Clostridium septicum

Stable & doing well on antibiotic therapy. Next test?

A) Lower extremity dopplers
B) Colonoscopy
C) Panorex
D) Toxicology screen

Clinical Scenario

37 year old IVDU presents with native AoV endocarditis. Blood cultures growing methicillin-sensitive *Staphylococcus aureus*. Rash with penicillin as a child (no anaphylaxis). WORST option is:

A) Nafcillin (after desensitization)
B) Daptomycin
C) Cefazolin
D) Vancomycin
Clinical Scenario

Patient had St. Jude prosthetic MV placed 3 years ago. Presents with F/C & confusion, and TEE shows a vegetation on the valve.

Blood cultures → Methicillin-resistant *Staphylococcus aureus* (MRSA)

What antibiotic therapy should you choose?

Clinical Scenario

57 yo man with prostate cancer presents with a PCN-susceptible *Enterococcus faecalis* pyelonephritis. Has persistent bacteremia on vancomycin (PCN allergy) & TEE shows MV vegetation.

Which is not a treatment option?
(A) Ampicillin + gentamicin (desensitized)
(B) Pencillin + gentamicin (desensitized)
(C) Vancomycin + gentamicin
(D) Quinupristin-dalfopristin (Synercid®)

Table 1. Therapy for Prosthetic Valve Endocarditis Caused by Staphylococcus aureus

<table>
<thead>
<tr>
<th>Regimen</th>
<th>Dose* and Route</th>
<th>Duration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methicillin-resistant strains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>30 mg/kg in 3 or 4 equally divided doses</td>
<td>2 wk</td>
<td>↓*</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>3 mg/kg per 24 h IV in 2 equally divided doses</td>
<td>2 wk</td>
<td>↓*</td>
</tr>
<tr>
<td>Methicillin-susceptible strains</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>30 mg/kg in 3 or 4 equally divided doses</td>
<td>2 wk</td>
<td>↓*</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>3 mg/kg per 24 h IV in 2 equally divided doses</td>
<td>2 wk</td>
<td>↓*</td>
</tr>
</tbody>
</table>

Enterococcus

- Remember, you need bactericidal therapy in infective endocarditis.
- β-lactams or vancomycin not bactericidal by themselves against *Enterococcus*.
- Must include aminoglycoside for FULL course (4-6 weeks):
 - Ampicillin or PCN or vancomycin PLUS gentamicin.
If resistant to gentamicin, streptomycin may be an alternative.

HACEK

- *Haemophilus aphrophilus*
- *Actinobacillus*
- *Cardiobacterium*
- *Eikenella*
- *Kingella*

Traditionally common in culture-negative endocarditis, but easily isolated in current blood culture systems at 5 days. Most produce β-lactamases, but sensitive to ceftriaxone, ampicillin/sulbactam, and fluoroquinolones.
Culture-Negative Endocarditis

- No etiology with 3 negative blood cultures at 7 days incubation
- Most frequent cause → prior antibiotics
- Inadequate collection techniques, such as small volume of blood drawn into bottles
- Fastidious organisms: Fungi (e.g. Histoplasma), Coxiella, Brucella, Chlamydia, Legionella, Mycoplasma, Bartonella, Tropheryma whippelii, HACEK, Abiotrophia (NVS)
- Non-infectious endocarditis: myxoma, rheumatoid nodules, SLE, NBTE in malignancy

Special Tests in Culture-Negative Endocarditis

- Serology: Bartonella, Coxiella burnetii, Brucella, Mycoplasma, Chlamydia, Legionella, consider RF or ANA in some
- Lysis centrifugation blood cultures: *Brucella*, fungi
- Hold blood cultures for 14 days
- Special stains and PCR on valve tissue

History is Vital

- Underlying valvular abnormality
- Procedures (e.g. dental extraction, colonoscopy with biopsies)
- IVDU
- Trauma
- Exposure to animals
Patients remain at high risk due to new valvular abnormality
Guidelines recommend establishing a new baseline at completion of therapy
Look at size of vegetations, LV function, valvular insufficiency
TTE adequate and preferred

Follow-up Echocardiography

Pathogens - Traditional Teaching

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococci</td>
<td>60-80%</td>
</tr>
<tr>
<td>Staphylococci</td>
<td></td>
</tr>
<tr>
<td>S. aureus</td>
<td>10-25%</td>
</tr>
<tr>
<td>Coagulase (-)</td>
<td>1-3%</td>
</tr>
<tr>
<td>Enterococci</td>
<td>5-18%</td>
</tr>
<tr>
<td>Gram (-) Rods</td>
<td>2-13%</td>
</tr>
<tr>
<td>Fungi</td>
<td>2-4%</td>
</tr>
<tr>
<td>Other Bacteria</td>
<td><5%</td>
</tr>
<tr>
<td>Mixed Infections</td>
<td>1-2%</td>
</tr>
<tr>
<td>Culture Negative</td>
<td><5%</td>
</tr>
</tbody>
</table>
Approach to Initial Echocardiography

<table>
<thead>
<tr>
<th>Initial TTE</th>
<th>Initial TEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE SUSPECTED</td>
<td>Low Initial Patient Risk and Low Clinical Suspection</td>
</tr>
<tr>
<td></td>
<td>High Initial Patient Risk, Moderate to High Clinical Suspection or Difficult Imaging Candidate</td>
</tr>
</tbody>
</table>

Complications of Infective Endocarditis

- Conduction disturbances
- Heart failure
- Septic emboli (lungs, CNS, coronaries)
- Mycotic aneurysm
- Splenic abscess
- Immune phenomena (glomerulonephritis)

Clinical Scenario

- Patient with F/C & new systolic and diastolic murmurs over right upper sternal border.
- Here is the rhythm strip.
- What is going on? What should you do?

Table 1. Microbiologic Etiology in 1779 Patients With Definite Endocarditis

<table>
<thead>
<tr>
<th>Organism/Group</th>
<th>No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus</td>
<td>558 (31.6)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>186 (10.5)</td>
</tr>
<tr>
<td>Coagulate-negative staphylococci</td>
<td>319 (18.0)</td>
</tr>
<tr>
<td>Viridans group streptococci</td>
<td>114 (6.6)</td>
</tr>
<tr>
<td>Streptococcus bovis</td>
<td>91 (5.1)</td>
</tr>
<tr>
<td>Enterococci</td>
<td>38 (2.1)</td>
</tr>
<tr>
<td>Non-HACEK gram-negative bacteria</td>
<td>32 (1.8)</td>
</tr>
<tr>
<td>Polymicrobial</td>
<td>23 (1.3)</td>
</tr>
<tr>
<td>Other</td>
<td>56 (3.1)</td>
</tr>
<tr>
<td>Culture negative</td>
<td>144 (8.1)</td>
</tr>
</tbody>
</table>

Indications for Surgery

- Heart failure related to valve dysfunction
- Persistent bacteremia (>7 days) despite appropriate antibiotics
- Recurrent emboli
- Perivalvular abscess or fistula

Relative indications: fungal endocarditis, highly-resistant organism, relapse after “adequate” course, culture-negative IE with persistent fever >10 days after starting therapy

Important Points

- Thorough H&P...social history matters
- Epidemiology changing → more *Staph aureus*
- Need bactericidal therapy
- Generally, need parenteral therapy
- Know complications & when to call a surgeon
- Revised AHA Guidelines for prophylaxis → indicated in many fewer patients