Upper GI Bleeding

Tasos Manokas, MD
Assistant Professor of Gastroenterology

Introduction

• GI bleeding results in over 300,000 hospitalizations annually in U.S.
• Upper GI bleeding accounts for 75-80% of all acute GI bleeding cases
 ✓ More common in men and elderly
 ✓ Incidence: 50-100 per 100,000 patients/year
 ✓ 20,000 deaths annually in United States

Clinical presentation

• Hematemesis
 ✓ Reflects bleeding proximal to ligament of Treitz
• Melena
 ✓ Can be seen with 100 cc blood in UGI tract
• Hematochezia
 ✓ Usually lower GI source or very rapid UGI blood loss (1000 cc blood)
 ✓ If associated with bright red NG aspirate, high mortality

Prognosis

• Wide spectrum of severity
 ✓ Trivial bleeding to variceal bleeding
• Emphasis on early identification and intervention of significant bleeds
• 2 most important prognostic factors
 ✓ Cause of bleeding (variceal)
 ✓ Underlying comorbid conditions
• Mortality from acute UGI bleeding: 5-10%
 ✓ Unchanged over last 50 years despite development, refinement of endoscopic therapy
Risk factors

- Risk factors associated with increased mortality
 - Age > 70
 - Significant comorbid conditions
 - Serious systemic disease
 - Leukocytosis, thrombocytopenia, coagulopathy
 - Large volume bleeding
 - Fresh hematemesis, bright red NG aspirate
 - Shock
 - Transfusion > 6 units PRBC

Overview

<table>
<thead>
<tr>
<th>Non-variceal bleeding</th>
<th>Variceal bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>Primary prophylaxis</td>
</tr>
<tr>
<td>Acute management</td>
<td>Acute management</td>
</tr>
<tr>
<td>Medical</td>
<td>Medical</td>
</tr>
<tr>
<td>Endoscopic</td>
<td>Endoscopic</td>
</tr>
<tr>
<td>Recurrent bleeding</td>
<td>Recurrent bleeding</td>
</tr>
<tr>
<td>Prevention</td>
<td>Secondary prophylaxis</td>
</tr>
</tbody>
</table>

Etiology of UGI bleeding

- Peptic ulcers (40-50%)
- Varices (5-30%)
- Mallory-Weis tear (5-15%)
- Mucosal erosions (15-25%)
- Other causes

Non-variceal bleeding
Peptic ulcer disease

- Most common cause of UGI bleeding
- H.pylori and aspirin/NSAIDs
 - 2 most common causes of ulcer formation
- Duodenal ulcers 2x more likely to bleed than gastric ulcers
 - High risk locations for bleeding:
 - Lesser curve of stomach (L gastric a.)
 - Posterior duodenal bulb (gastroduodenal a.)

Aspirin

- Increased risk of GI complications
 - Dose-dependent relationship
- Even low dose (75 mg/day) shown to increase risk for GI bleeding
- Enteric coated formulations no proven benefit to reducing risk of GI bleeding

Risk Factors

- Risk factors for NSAID-induced ulcer formation/complication
 - Prior history of ulcer disease or complication
 - Advanced age
 - Risk increases linearly
 - High or multiple doses of NSAIDs
 - Concomitant anticoagulants
 - Concomitant glucocorticoids
 - Steroids alone not a risk factor
 - Comorbid conditions
 - Especially heart disease
 - Ethanol use

Mallory-Weis tear

- Mucosal tears located at the G-E junction
- Stop spontaneously in 80-90% of cases
- Usually caused by retching
- Rarely a severe cause of bleeding
 - Managed with supportive care
 - Rarely require endoscopic/surgical intervention
Mucosal erosions

- Esophagitis, gastritis, duodenitis
 - Appear as erythema or superficial erosions endoscopically
 - Cameron’s lesions: linear erosions within a large hiatal hernia
- Rarely associated with significant UGI bleeding
- Related to NSAID use, alcohol, or stress gastritis
- Bleeding and stress gastritis: < 3% of pts in ICU
 - High risk: mechanical ventilation > 48 hours, coagulopathy, head injury, extensive burn injuries
 - Prophylaxis: H2-blockers > sucralfate
 - Limited data on PPI

Hemobilia

- Bleeding into biliary tree
 - Vascular communication with bile ducts
- Causes: trauma, liver biopsy most common
 - Also gallstones, vascular aneurysms, liver abscess, neoplasia
- Diagnosis difficult
 - Clinical history and endoscopic appearance of blood coming from papilla
 - Can be missed with standard-viewing endoscope
 - Diagnosis made angiographically

Aortoenteric Fistula

- Rare causes of life-threatening GI bleed
- Primary risk factor: Abdominal aortic graft reconstruction
 - Occur with 0.5% of aortoiliac surgery
 - Most commonly develop 3-5 years after surgery
 - More common with infected grafts
- Most communicate with 3rd portion of duodenum
- “Herald” bleed: self-limited bleed hours/days before severe bleeding

Hemosuccus Pancreaticus

- Bleeding into pancreatic duct
- Complication of chronic pancreatitis, pseudocysts
 - Aneurysm/pseudoaneurysm of peripancreatic, splenic arteries eroding into pancreatic duct
- Diagnosis difficult
 - Clinical history and endoscopic appearance of blood coming from papilla
 - Can be missed with standard-viewing endoscope
 - Diagnosis made angiographically
Vascular Lesions

- Vascular ectasia, AVM's
 - Associated with connective tissue dz's (scleroderma, CREST), renal failure, radiation tx, cirrhosis, HHT
 - Watermelon stomach: diffuse, linear AVM's in gastric antrum; often found in elderly women
- Dieulafoy lesions
 - Large, submucosal artery usually located in gastric cardia
 - Moderate to severe bleeding

Neoplasms

- Neoplasms
 - Primary adenocarcinoma, lymphoma, neuroendocrine
 - Stromal tumors (GIST): rare, often present in men > 50 with UGI bleeding
 - Bleeding rarely from metastatic lesions (melanoma, breast)

GIST

- Initial management - Resuscitation
 - ABC’s
 - IV (preferably large-bore peripheral), O₂, monitor
 - Type and cross, volume expansion (crystalloid, PRBC’s, FFP if underlying coagulopathy)
 - NG tube and lavage
 - ?Intubation for airway protection?
Laboratory Evaluation

- **Hematocrit**
 - Initial Hct may not reflect degree of blood loss accurately
 - Hct falls over 24-72 hours as extravascular fluid enters vascular space to restore volume
 - Hct may continue to trend down for days after bleeding stops
 - Not clinically relevant if no signs of active bleeding (hematemesis, melena, hematochezia)

IV PPI

- **Peptic ulcer bleeding**
 - 2 large meta-analysis demonstrate significantly lower rebleeding rates and surgery in pt’s treated with IV PPI compared to placebo\(^1,2\)
 - 1 review also found significant benefit in mortality
 - All cause UGI bleeding
 - 1 large meta-analysis demonstrated no benefit in rebleeding rates, surgery or mortality when compared to placebo\(^3\)

Medical Management

- **IV proton pump inhibitors (PPI)**
 - Promotes clot stabilization by maintaining intragastric pH > 6
 - Clot lysis by pepsin at pH < 5
 - Pepsin irreversibly inactivated at pH > 6
 - Platelet aggregation improved at pH > 6

Medical Management

- **IV octreotide**
 - Somatostatin analogue
 - Physiologic effects:
 - Decreases gastroduodenal mucosal blood flow
 - Inhibits gastric acid and pepsin secretion
 - Stimulates mucus production
 - Causes splanchnic vasoconstriction and subsequent decrease in splanchnic blood flow
 - Theoretical benefit over PPI in patients with peptic ulcer bleeding
 - More diverse physiologic effect on upper GI tract
IV Octreotide

- **Peptic ulcer bleeding**
 - 1 large meta-analysis showed significant reduction in continued/recurrent bleeding
 - Trend toward significance in all cause UGI bleeding
- **All cause UGI bleeding**
 - 2 RCT’s demonstrated no significant benefit compared to placebo or H₂ blocker
 - 1 RCT showed significant benefit in initial hemostasis, blood transfusions, need for surgery, length of hospital stay compared to H₂ blocker

Erythromycin before endoscopy

- Shown in multiple studies to improve the quality of endoscopic exam
- Some studies also show decreased need for second look EGD
- Given as a single 250 mg IV dose
- Must check ECG before giving to assess QTc

Role for urgent endoscopy

- Within 6 hours of presentation
- Indications
 - Recurrent/continued UGI bleeding
 - Ongoing hematemesis, active melena/hematochezia
 - Risk for variceal hemorrhage
 - High risk for recurrent bleeding

Endoscopic Findings

- Clotted blood in stomach
Endoscopic Findings

- Active bleeding

Endoscopic Findings

- Adherent clot

Endoscopic Findings

- Visible vessel

Endoscopic Therapy

- High risk lesions treated with dual therapy
 - Injection with epinephrine (1:10,000)
 - Thermal therapy
 - Heater probe (monopolar)
 - Bipolar gold probe
 - Argon plasma coagulation (APC)
- Dual therapy superior in preventing rebleeding rates
Risk of Rebleeding

- Rebleeding after endoscopic therapy occurs in 20-30%
- Most (95%) occur within 1st 72 hours
- Risk factors
 - Significant bleeding
 - Hemodynamic instability (HR>100; SBP<100)
 - Transfusion > 4 units PRBC
 - Anticoagulation
 - Endoscopic stigmata

Repeat Endoscopy

- “2nd look” endoscopy often performed 24 hours after initial procedure
- In absence of rebleeding, not warranted for all patients
 - Only certain high risk groups shown to benefit
- In patients with rebleeding (rebleeding rate: 20-30%), repeat endoscopy warranted for further treatment

Endoscopic Stigmata

- High risk for rebleeding
 - Active bleeding (70-90%)
 - Visible vessel (40-50%)
 - Adherent clot (10-35%)
 - Ulcers > 2 cm
 - Posterior duodenal bulb ulcers
- Low risk
 - Flat spot
 - Clean ulcer base

Angiography

- Indicated in refractory bleeding
 - Not amenable to endoscopic therapy
 - Poor surgical candidates
- Requires fast bleeding rate (>0.5 ml/min)
- Can embolize left gastric a. or gastroduodenal a. empirically based on endoscopic localization of bleeding
Surgery

• Changing role of surgery
 ✓ No longer used to cure ulcer disease
 • PPI's, H.pylori eradication now cures most cases of PUD
 ✓ Now utilized to stop life-threatening bleeding

• Indications
 ✓ Bleeding where endoscopy and/or angiography has failed
 ✓ Large visible vessels (>2-3 mm) along lesser curve of stomach and in duodenal bulb

H. pylori treatment

• Documenting clearance
 ✓ Failure of therapy associated with ulcer recurrence
 ✓ Simple, cost-effective, non-invasive tests available (urea breath, stool antigen tests)
 ✓ Must wait 4 weeks after completion of therapy
 • Must hold PPI 1 week prior to test
 ✓ Once clearance confirmed, re-infection rare

Prevention of future bleeding

• Eliminating NSAID’s
• Eradication of H. pylori
 ✓ Triple therapy for 10-14 days first line therapy
 ✓ Bismuth + Metronidazole + Tetracycline
 • QID dosing can decrease compliance
 ✓ PPI + Amoxicillin + Clarithromycin
 ✓ Increasing resistance to metronidazole, clarithromycin
 ✓ Most commonly used regimens cure 80% of cases

Variceal Bleeding

Jim Hanje, MD
Assistant Professor of Gastroenterology
Ohio State University Medical Center
Cirrhosis

Normal

Cirrhosis

Irregular surface

Nodules

Portal Hypertension

- Progressive complication of cirrhosis
- Marks transition from early compensated cirrhosis to decompensated, end-stage liver disease

Portal Hypertensive Bleeding

- Esophagogastric varices, portal hypertensive gastropathy, gastric antral vascular ectasias
- Clinical Presentation
 ✓ Hematemesis
 ✓ Melena
 ✓ Shock
- Variceal hemorrhage most common manifestation, often life-threatening
Prevalence of Esophageal Varices in Cirrhosis

Diagnostic

- Screening EGD should be performed at time of diagnosis of cirrhosis to screen for varices
- Varices progress at a rate of 8% per year
- Repeat EGD every 2-3 years depending on size of varices to evaluate for progression

Prevalence and Size of Esophageal Varices in Patients with Newly-Diagnosed Cirrhosis

Varices Increase in Diameter Progressively

Pagliaro et al., In: Portal Hypertension: Pathophysiology and Management, 1994: 72

Merli et al., J Hepatol 2003;38:266
Large Varices Are More Likely To Rupture

% Patients without bleeding

2-year probability of first bleed:

- Small varices: 7%
- Large varices: 30%

* Merli et al., Hepatol 2003; 38:266
* Conn et al., Hepatology 1991; 13:902

Primary Prophylaxis: Non-Selective Beta-Blockers

<table>
<thead>
<tr>
<th>Bleeding rate (2 year)</th>
<th>Control</th>
<th>Beta-blocker</th>
<th>Absolute rate difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>All varices 25%</td>
<td>15%</td>
<td>-10%</td>
<td></td>
</tr>
<tr>
<td>(11 trials) (n=600)</td>
<td>(n=590)</td>
<td>(-16 to -5)</td>
<td></td>
</tr>
<tr>
<td>Large varices 30%</td>
<td>14%</td>
<td>-16%</td>
<td></td>
</tr>
<tr>
<td>(8 trials) (n=411)</td>
<td>(n=400)</td>
<td>(-24 to -8)</td>
<td></td>
</tr>
<tr>
<td>Small varices 7%</td>
<td>2%</td>
<td>-5%</td>
<td></td>
</tr>
<tr>
<td>(3 trials) (n=100)</td>
<td>(n=91)</td>
<td>(-11 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

D’Amico et al., Sem Liver Dis 1999; 19:475

Primary Prophylaxis: Non-Selective Beta-Blockers

<table>
<thead>
<tr>
<th>Bleeding rate (2 year)</th>
<th>Control</th>
<th>Beta-blocker</th>
<th>Absolute rate difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>All varices 25%</td>
<td>15%</td>
<td>-10%</td>
<td></td>
</tr>
<tr>
<td>(11 trials) (n=600)</td>
<td>(n=590)</td>
<td>(-16 to -5)</td>
<td></td>
</tr>
<tr>
<td>Large varices 30%</td>
<td>14%</td>
<td>-16%</td>
<td></td>
</tr>
<tr>
<td>(8 trials) (n=411)</td>
<td>(n=400)</td>
<td>(-24 to -8)</td>
<td></td>
</tr>
<tr>
<td>Small varices 7%</td>
<td>2%</td>
<td>-5%</td>
<td></td>
</tr>
<tr>
<td>(3 trials) (n=100)</td>
<td>(n=91)</td>
<td>(-11 to 2)</td>
<td></td>
</tr>
</tbody>
</table>

D’Amico et al., Sem Liver Dis 1999; 19:475
Primary Prophylaxis: Nonselective Beta-Blockers

- Reduce portal pressure via:
 - Splanchnic vasoconstriction (β-2 effect)
 - Decreased cardiac output (β-1 effect)
- Nadolol, Propranolol
 - Titrated weekly to goal: ↓ HR by 25%

Primary Prophylaxis – Endoscopic Band Ligation (EBL)

- Prophylactic EBL every 4 weeks until variceal obliteration
- Esophageal ulcerations form following EBL
 - Can cause dysphagia, chest pain in most patients
 - PPI BID shown to decrease post-EBL bleeding
- Fewer side effects than β-blockers, but more severe
 - Bleeding due to esophageal ulcerations, variceal rupture

Primary Prophylaxis: EBL vs Beta-Blockers (BB)

- Limited utility in clinical practice:
 - Frequent side effect/contraindications (20%)
 - Limited reduction in portal pressures at doses tolerated
 - Need for long-term/lifelong therapy
 - Rebound bleeding with cessation of therapy

Acute Variceal Bleeding

Evolution of Varices

<table>
<thead>
<tr>
<th>Cirrhosis with no varices</th>
<th>Small varices</th>
<th>Medium / large varices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-primary prophylaxis</td>
<td>Repeat endoscopy in 1-2 years</td>
<td>Repeat endoscopy in 2-3 years</td>
</tr>
<tr>
<td></td>
<td>Small varices</td>
<td>Medium/Large varices</td>
</tr>
<tr>
<td></td>
<td>No specific therapy</td>
<td>Non-selective beta-blockers</td>
</tr>
</tbody>
</table>

Level of Intervention

- Pre-primary prophylaxis
- Primary prophylaxis

Management Recommendations

- Repeat endoscopy in 2-3 years
- No specific therapy

Predictors of hemorrhage:
- Variceal size
- Red signs
- Child B/C

N Engl J Med 1988; 319:983
Acute Variceal Bleeding

- Initial management - Resuscitation
 - ABC’s
 - IV (preferably large-bore peripheral), O₂, monitor
 - Type and cross, volume expansion
 - Goal Hgb 8 g/dl; over-resuscitation can ↑ portal pressure and ↑ risk of rebleeding and death
 - Correct coagulopathy
 - FFP, platelets, DDAVP, cryoprecipitate
 - Recombinant factor Vila
 - Multi-center RCT showed no overall benefit compared to standard therapy BUT…
 - CTP B/C patients ↓ bleeding rates

Probability of Remaining Free of Recurrent Variceal Hemorrhage

Prophylactic Antibiotics

- Higher incidence of bacterial infections in cirrhotic patients admitted with UGI bleed
 - Increased risk with increasing disease severity
- Fluoroquinolone orally BID
 - Selective eradication of gram – bacteria in gut
 - Can administer IV if NPO
- Ceftriaxone IV more effective than oral Norfloxacin in CTP B/C patients

Prophylactic Antibiotics

- IMPROVED OUTCOMES:
 - Decreased rate of bacterial infections and SBP
 - Decreased rate of rebleeding
 - Improved survival
Pharmacologic Therapy

- Octreotide
 - Synthetic analogue of somatostatin
 - 50μg bolus, followed by 50μg/h continuous infusion
 - Safe, minimal side-effects, can be used for 5 days
 - Causes splanchnic vasoconstriction
 - Acutely lowers portal pressures by decreasing splanchnic blood flow
 - Decreases bleeding, no mortality benefit
 - Minimal benefit when used alone without EBL
 - Not as potent as other agents, can get tachyphylaxis

Endoscopy

- Endoscopic band ligation (EBL)
 - Treatment of choice for bleeding esophageal varices
 - Successful in 70-90% of cases
 - Superior to sclerotherapy with decreased rebleeding rates, mortality rates and incidence of complications
- EBL + Octreotide
 - Superior to either modality alone
 - Shown to significantly reduce rebleeding rates
 - No mortality benefit over banding alone

Refractory Bleeding

- Occurs in 10-20% of patients
 - HVPG > 20 mm Hg predicts failure/rebleeding
 - Transjugular intrahepatic portosystemic shunt (TIPS)
 - Most common salvage therapy for refractory variceal bleeds

Combination Drug / Endoscopic Therapy More Effective Than Endoscopic Therapy Alone

<table>
<thead>
<tr>
<th>Therapy Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sclero + Octreotide</td>
<td>Besson, 1995</td>
</tr>
<tr>
<td>Ligation + Octreotide</td>
<td>Sung, 1995</td>
</tr>
<tr>
<td>Sclero + Octreotide / ST</td>
<td>Signorelli, 1996</td>
</tr>
<tr>
<td>Sclero + Octreotide</td>
<td>Ceriani, 1997</td>
</tr>
<tr>
<td>Sclero + Octreotide</td>
<td>Signorelli, 1997</td>
</tr>
<tr>
<td>Sclero + ST</td>
<td>Aggerinos, 1997</td>
</tr>
<tr>
<td>Sclero + Octreotide</td>
<td>Zuberi, 2000</td>
</tr>
<tr>
<td>Sclero / ligation + Vapreotide</td>
<td>Cales, 2001</td>
</tr>
</tbody>
</table>

Favors endoscopic therapy alone
Favors endoscopic plus drug therapy

Relative Risk

Bañares R et al., Hepatology 2002; 35:609
Polytetrafluoroethylene-covered TIPS stents

Covered Stents vs Uncovered Stents

Bureau et al. Gastroenterology 2004; 126:469

Evolution of Varices

Cirrhosis with no varices
- Repeat endoscopy in 2-3 years
- No specific therapy

Small varices
- Pre-primary prophylaxis
- Beta-blocker to prevent enlargement (CTP B/C pts)

Medium / large varices
- Non-selective beta-blockers
- EVL in those who are intolerant to drugs
- Endoscopic/pharmacologic therapy
- Antibiotics in all patients
- TIPS or shunt surgery as rescue therapy

Level of Intervention

Primary prophylaxis

Management Recommendations

Bureau et al. Gastroenterology 2004; 126:469
Secondary Prophylaxis

- Cirrhotics with prior variceal bleed have high risk of rebleeding and death
- If untreated, 60-70% will rebleed within 1-2 years with 30% mortality rate

- **Nonselective β-blockers**
 - Reduces rebleeding rates to 40%

- **EBL**
 - Reduces rebleeding rates to 30%
- **EBL + nonselective β-blocker**
 - Combination therapy superior to either modality alone
 - Rebleeding rates: 15-25%

Evolution of Varices

<table>
<thead>
<tr>
<th>Level of Intervention</th>
<th>Management Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-primary prophylaxis</td>
<td>+ Repeat endoscopy in 2-3 years</td>
</tr>
<tr>
<td>Primary prophylaxis</td>
<td>+ No specific therapy</td>
</tr>
<tr>
<td>TIPS/shunt surgery</td>
<td>+ Beta-blockers + EVL</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>+ Endoscopic/pharmacologic therapy</td>
</tr>
<tr>
<td>Beta-blocker to prevent enlargement</td>
<td>+ Antibiotics in all patients</td>
</tr>
</tbody>
</table>

Cirrhosis with no varices

- Small varices
 - No hemorrhage
 - Repeat endoscopy in 1-2 years
 - Beta-blocker to prevent enlargement (CTP B/C pts)

Medium / large varices

- No hemorrhage
 - Non-selective beta-blockers
 - EVL in those who are intolerant to drugs

Variceal hemorrhage

- Medium/Large varices
 - Endoscopic/pharmacologic therapy
 - Antibiotics in all patients
 - TIPS or shunt surgery as rescue therapy

Secondary variceal hemorrhage

- Repeat endoscopy in 2-3 years
- No specific therapy
Summary

• ALL CIRRHOTICS WITH AN EPISODE OF VARICEAL BLEEDING SHOULD BE REFERRED TO A TRANSPLANT CENTER
• EGD should be performed at time of diagnosis of cirrhosis to screen for varices
• Primary prophylaxis with B-blocker vs EBL in all patients with medium or large esophageal varices
• Prophylactic antibiotics in acute variceal bleeding improves outcomes