Traumatic Shoulder Instability: Treatment Options for Physicians

Julie Y Bishop, MD
Assistant Professor
OSU Department of Orthopaedics
September 25, 2009

Goals

- Define traumatic anterior shoulder instability
- Review the pathology involved with instability
- Review the pathology of recurrent instability
- Review the long-term outcomes of instability
- Discuss treatment options based on patient demographics

Shoulder Instability: Many Types

Must be clear always what we are referring to...

- Atraumatic Instability
 - Subluxations
 - Ligamentously lax patient
 - Typically no structural lesion
 - Multidirectional
 - Surgery rare
- Traumatic Instability
 - Locked dislocation
 - Requires reduction
 - Structural damage
 - Surgery common
 - Unidirectional
 - Anterior
 - Posterior

Most Common:

Traumatic, Locked, Anterior Shoulder Dislocation

- Common problem that is sports specific
 - Football
 - Basketball
 - Hockey
 - Wrestling
 - Traumatic fall

20% of shoulder injuries
The Concern for our Patients

Recurrent Instability

Recurrent vs. Age Natural History

<table>
<thead>
<tr>
<th>Author</th>
<th>Published</th>
<th>Age</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>McLaughlin (1950)</td>
<td>1950</td>
<td><20</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td><40</td>
<td>60%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>>40</td>
<td>10%</td>
</tr>
<tr>
<td>Rowe</td>
<td>1980</td>
<td><20</td>
<td>94%</td>
</tr>
<tr>
<td>Simonet/Cofield</td>
<td>1984</td>
<td><30</td>
<td>82%</td>
</tr>
<tr>
<td>Arciero</td>
<td>1994</td>
<td><20</td>
<td>80%</td>
</tr>
</tbody>
</table>

More Recent Studies Confirm These Results

Pathology of an Anterior Dislocation

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bankart lesion</td>
</tr>
<tr>
<td>Ant/inf labrum Torn</td>
</tr>
<tr>
<td>Hill-Sachs lesion</td>
</tr>
<tr>
<td>Impaction of Humeral head</td>
</tr>
<tr>
<td>Capsular deformation</td>
</tr>
<tr>
<td>Capsule stretches 4-7%</td>
</tr>
</tbody>
</table>
Labrum

- Increase contact surface area
- Anchor for Capsule/Ligaments

Humeral Pathology

Initial Dislocation

- **Hill-Sachs**
 - 90% Arciero 1997
 - 100% Kirkley 1999
 - 56% Larrain 2001

Bankart: Capsulolabral Avulsion

Initial Dislocation

<table>
<thead>
<tr>
<th>Author</th>
<th>Published</th>
<th>Bankart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker</td>
<td>1990</td>
<td>87%</td>
</tr>
<tr>
<td>Norlin</td>
<td>1993</td>
<td>100%</td>
</tr>
<tr>
<td>West Point</td>
<td>2001</td>
<td>97%</td>
</tr>
</tbody>
</table>

Recurrent Dislocations

- The more dislocations, the worse the pathology
 - Increase ligament/labral damage
 - More capsular stretch
 - Increased Hill-Sachs lesions
 - Glenoid bone loss – erodes glenoid
 - Cartilage damage

References:
- Burkhart and De Beer, Arthroscopy, 2000
Ramifications?

<table>
<thead>
<tr>
<th>Short Term</th>
<th>Long Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easier to dislocate</td>
<td>Higher risk for arthritis</td>
</tr>
<tr>
<td>Fail arthroscopy</td>
<td>More severe arthritis</td>
</tr>
<tr>
<td>Require open surgery</td>
<td></td>
</tr>
<tr>
<td>Bone grafting</td>
<td>Seen at earlier age</td>
</tr>
<tr>
<td>Uncertain outcomes</td>
<td></td>
</tr>
</tbody>
</table>

Glenoid Bone Loss

- Anterior
- Posterior

Glenoid Bone Loss

- N/S glenoid
- Glenoid bone loss

Cartilage Damage

- [Image of cartilage damage]
Treatment Options

<table>
<thead>
<tr>
<th>Patient Age > 40 @ 1st dislocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Check x-rays: make sure no fractures</td>
</tr>
<tr>
<td>✓ Sling for comfort (typically 1-2 weeks)</td>
</tr>
<tr>
<td>✓ Check rotator cuff exam!</td>
</tr>
<tr>
<td>✓ Start physical therapy soon</td>
</tr>
<tr>
<td>• Higher risk for post-dislocation stiffness</td>
</tr>
<tr>
<td>✓ Progress all activities to tolerance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patient Age > 20 yo; <40 yo</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Follow same principles just outlined</td>
</tr>
<tr>
<td>✓ Unlikely to have any rotator cuff pathology</td>
</tr>
<tr>
<td>✓ Sedentary lifestyle – unlikely to recur</td>
</tr>
<tr>
<td>✓ Athletes:</td>
</tr>
<tr>
<td>• return to sports when full motion/strength and no pain</td>
</tr>
<tr>
<td>✓ Counsel patients accordingly:</td>
</tr>
<tr>
<td>• Age – closer to 20?</td>
</tr>
<tr>
<td>• Gender – male higher risk</td>
</tr>
<tr>
<td>• Activity level – contact sports/martial arts/etc</td>
</tr>
<tr>
<td>✓ MORE LIKELY TO HAVE A RECURRENT DISLOCATION</td>
</tr>
</tbody>
</table>

What if They Fail Conservative Tx?

<table>
<thead>
<tr>
<th>c/o Recurrent anterior dislocation –</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Halt contact sports</td>
</tr>
<tr>
<td>✓ MRI/gadolineum</td>
</tr>
<tr>
<td>✓ Refer for surgical evaluation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c/o Subluxations –</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Determine if it c/o is true instability</td>
</tr>
<tr>
<td>✓ MRI</td>
</tr>
<tr>
<td>✓ When do they occur – Sports versus ADL’s</td>
</tr>
<tr>
<td>✓ May be willing to give up sport – but need to shower!</td>
</tr>
</tbody>
</table>

PE Findings with Anterior Instability

| Many of the exam techniques are difficult |
| Often the patient is guarding during exam |
| Apprehension test very reliable: |

ABD/ER: FEAR

POSTERIOR PRESSURE: RELIEVES FEAR
Treatment Options

- Age < 20 yo @ 1st dislocation
 - High chance of recurrence
 - Still controversial
 - Rehab/finish season
 - Surgery if sustain a recurrence
 - Surgery at end of season
 - OR: Stop season – proceed with surgery
- Surgery?
 - Confirm pathology with an MRI

Evaluation and Treatment of Rotator Cuff Tears

Grant L. Jones, M.D.
Associate Professor
Department of Orthopaedic Surgery
The Ohio State University

Should the Bankart Lesion be Viewed as the ACL of the Shoulder??

Rotator Cuff Tendons

- Supraspinatus
- Infraspinatus
- Teres minor
- Subscapularis
Function of the Rotator Cuff

- Maintenance of humeral head position in the glenoid
 - Compresses humeral head into fossa, stabilizing against superior migration and providing stable fulcrum against which rotational forces can be applied.
- Rotational power of the shoulder
- Anterior and posterior aspects of the cuff work in concert
- Loss of one or the other creates translation movement and reduces the effect of compression

Etiology of Rotator Cuff Tears

Intrinsic Factors

- Degenerative or tendinosis problem, rather than true tendinitis
- Vascular factors
 - Watershed or critical zone 1 cm medial to insertion of supraspinatus tendon
 - Differential vascularity between bursal and articular surfaces
- 5 layer structure predisposes to internal shear forces resulting in intra-substance tears
Extrinsic (Impingement) Factors

- Acromial morphology
- Anterior acromial enthesophytes
- Unstable os acromiale
- Degenerative acromioclavicular joint
- Internal impingement in overhead athletes

History

- Age- tears more common in older patients
- Trauma- dislocation in patients over 35, high incidence of rotator cuff tear
- Overhead activities cause pain
- Night Pain
- Pain over deltoid/ lateral shoulder
- Weakness/ loss of endurance
- Crepitation

Evaluation of Rotator Cuff Disorders

Physical Examination

- Inspection- atrophy, asymmetry, deformity (long head biceps rupture)
- Palpation- AC joint, bicipital groove, greater tuberosity, crepitation
- Active and passive range of motion
- Strength testing
- Neck exam- Spurling's maneuver
<table>
<thead>
<tr>
<th>Impingement Examination</th>
<th>Plain Radiographs</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hawkins’ sign</td>
<td></td>
</tr>
<tr>
<td>• Neer impingement sign/test</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Imaging</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Plain radiographs- AP, low-voltage AP joint view, outlet view, axillary view, internal rotation AP</td>
<td></td>
</tr>
<tr>
<td>• Arthrogram</td>
<td></td>
</tr>
<tr>
<td>• Ultrasound</td>
<td></td>
</tr>
<tr>
<td>• MRI</td>
<td></td>
</tr>
<tr>
<td>• MR Arthrogram- assess for labral tears or integrity of rotator cuff repair</td>
<td></td>
</tr>
</tbody>
</table>
Rotator Cuff Tears in Asymptomatic Patients

- Prevalence of rotator cuff tears is extremely high
- MRI of asymptomatic volunteers demonstrates partial or complete tears in 54% of people > 60 y.o. (Sher et al, 1995)
- Ultrasound of asymptomatic subjects detected a prevalence of rotator cuff tears in 40% of subjects > 50 y.o.
- Rotator cuff disease is found commonly in asymptomatic people

Non-Surgical Management

- PT to develop stabilizing rotator cuff force couple, strengthen scapular stabilizers, and stretch tight areas of the joint capsule
- NSAID’s
- Corticosteroid injections?
 - Wei et al, JBJS- rat study; single dose of steroid may not have long term effects on collagen gene expression, but collagen composition may be acutely by an injection

Treatment

Success of Non-Operative Treatment
Multi-Center Orthopaedic Outcomes Network (MOON) Group (2009)

- 327 patients enrolled with chronic full-thickness rotator cuff tears
- 3 months (including surgery or cured at 6 weeks)
 - 49/214 (22.89%)
- 1 year
 - 10/162 (6%) went to surgery
- 2 years
 - 0/28 have gone on to surgery
- A trial of rehabilitation may be indicated prior to proceeding with surgery in those patients with chronic full-thickness rotator cuff tears.
Surgical Indications

- Surgery indicated if acute trauma associated with significant weakness of the shoulder and posterior cuff involvement (infraspinatus, teres minor) or subscapularis involvement as seen with an anterior shoulder dislocation
- Young patients with higher functional demands
- Failure of 3-6 months of conservative management

Prognostic Factors for Success of Rotator Cuff Repair

- A number of retrospective studies have identified features associated with poor outcome after surgical management:
 - Duration of symptoms
 - Fatty infiltration of the atrophied
 - Larger rotator cuff tears
 - Age of the patient
 - Worker’s Compensation claims
 - Limited pre-operative ROM
 - Multiple comorbidities

Repair Techniques

- Open
- Mini-open- combination of open and arthroscopic surgery
- All arthroscopic

Mini-Open Rotator Cuff Repair
All Arthroscopic Rotator Cuff Repair

- Systematic review of literature
- No difference in clinical outcomes with arthroscopic versus open repair
- Slight decrease in pain and increase in range-of-motion in short-term with arthroscopic repair
- Slight increase in re-tear rates in larger tears (>3 cm) with arthroscopic repair

Conclusions

- Diagnosis is made with a thorough history and physical examination in conjunction with radiographic studies.
- Not all rotator cuff tears need repaired
- Need to develop more definitive indications for surgery based on prospective studies
- Although trend is toward less invasive surgery, there are similar clinical/radiographic results with arthroscopic and open repair

Arthroscopic Versus Open?