Laparoscopic Hernia Repair

David B Renton, MD
Assistant Professor
Department of Surgery
The Ohio State University

Several Different Types of Hernia

- Ventral Hernia
 - Umbilical
 - Epigastric
 - Spigelian
 - Incisional
- Inguinal Hernia
 - Direct
 - Indirect
- Paraesophageal Hernia
 - Four different types

Advantages of Laparoscopic Ventral vs. Open Hernia Repair

- Lower wound infection rate: 2.6% vs. 5.8%
- Lower Mesh infection rates: 2% vs. 3.5%
- Recurrence rates: 4% vs. 16%
- Overall Complications: 23.2 vs. 30.2%.
- Drains not needed.

Laparoscopic Ventral Hernia Repair

- Patient selection is very important
- If incisional hernia repair is needed, need full history of surgical procedures
- No ongoing infections, fistula, or open wounds can be present
- If loss of domain is present, laparoscopic approach may not be able to bridge the gap
Trocar Placement for Laparoscopic Incisional Hernia Repair

<table>
<thead>
<tr>
<th>Author Type of repair</th>
<th>Number of patients</th>
<th>Follow-up period</th>
<th>Complication rate (%)</th>
<th>Hernia recurrence rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutledge McVay</td>
<td>396</td>
<td>9 years</td>
<td>NR</td>
<td>2.0</td>
</tr>
<tr>
<td>Amid Lichtenstein</td>
<td>3,250</td>
<td>Average of 4 years (range: 1 to 8 years)</td>
<td>NR</td>
<td>1.5</td>
</tr>
<tr>
<td>Rutkow and Robbins</td>
<td>2060</td>
<td>NR</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Nyhus</td>
<td>1200</td>
<td>37 years</td>
<td>NR</td>
<td>1.6</td>
</tr>
<tr>
<td>Felix Transabdominal preperitoneal laparoscopic repair TAPP</td>
<td>733</td>
<td>24 months</td>
<td>13</td>
<td>0.3</td>
</tr>
<tr>
<td>Felix Total extraperitoneal laparoscopic repair TEP</td>
<td>382</td>
<td>Average of 9 months</td>
<td>11</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Laparoscopic Inguinal Hernia Repair

Trocar Placement
Inguinal Hernias

- **Type I (sliding hernia)**
 - Upward migration of GE junction into posterior mediastinum
 - Represent 90% of PEHs
 - Found in greater than 10% patients on routine GI studies
 - Prevalent during third to fifth decades
 - Often associated with symptoms of GERD

Paraesophageal Hernia

- **Type I (sliding hernia)**
 - Upward migration of GE junction into posterior mediastinum
 - Represent 90% of PEHs
 - Found in greater than 10% patients on routine GI studies
 - Prevalent during third to fifth decades
 - Often associated with symptoms of GERD

- **Type II (rolling)**
 - Upward displacement of gastric fundus with normal positioned GE junction
 - Less than 2% of all HHs
 - Common symptoms include postprandial fullness/pain, nausea, dysphagia and heartburn
 - Can present with anemia and pulmonary dysfunction less commonly
Paraesophageal Hernia

- Type III (mixed)
- About 5% of all HHs
- Combines type I and type II
- Symptoms similar to type II
- Most prevalent in fifth to sixth decade
- Most commonly on left side of diaphragm
- Divided into Type 3A (natural) and Type 3B (postoperative/iatrogenic)
- Type IV contains omentum/colon

Laparoscopic Hernia Repair

- Lots of different types of hernias
- Many can be fixed using laparoscopic techniques
- Patient selection is important
- Surgical wisdom comes in knowing when not to operate
Abdominal Wall Reconstruction

A.V. Manilchuk M.D.
Assistant Professor
Department of Surgery
The Ohio State University

Ventral Hernia Repair Principles

- Incorporation of the remaining abdominal wall in the repair
- Tension-free
- Dynamic muscular support

Muscle and Investing Fascia

Abdominal Wall Reconstruction

- Autologous tissue rearrangement
- Prosthetic or bioprosthetic materials
- Structural anatomy should be integrated with understanding the dynamic function of the abdominal wall.
Treatment Options

- Primary Repair
- Mesh
- “Components Separation” with and without mesh
- Local flaps and Free tissue transfer
- Staged repair

Mesh

- Nonabsorbable: Polypropylene / Polyester / PTFE
- Bioprosthetic
- Anchor mesh to well vascularized tissue
- Complications:
 - Seroma, Infection, fistula formation, erosion, & continued drainage

Primary Repair

- Patient selection
- Limited to small defect
- Highest recurrence rate
- Tension leads to ischemia and failure

Mesh Placement
Onlay Technique

- Still most popular
- Milliken survey: 1/2 of surgeons use this repair without closing the fascial defect.
- The disadvantages:
 - Wide tissue undermining predisposes to wound complications
 - The pressure required to disrupt the mesh from the anterior abdominal wall is less than other repairs

Inlay Technique

- Provides for a tension-free repair at the time of surgery
- No undermining of the onlay repair
- Intra-abdominal pressure - tension to the mesh-fascial interface, which is the weakest point of the repair

Intraperitoneal Underlay Placement

- Open and laparoscopic.
- Large overlap allows for better tissue ingrowth
- Different Fixation techniques
- Recurrence 5%

Open Intraperitoneal Underlay
Retrorectus, Retroperitoneal Underlay

- Rives and Stoppa
- Mesh - above the posterior rectus sheath and beneath the rectus muscle
- Overlap between the mesh and fascia
- Distribution of pressure over a wider area (Pascal’s principle)
- Pressure-induced apposition promotes ingrowth
- Physiologic repair

Components Separation

- Oscar Ramirez (1990):
 - Cadaveric dissection
 - Incision 1cm lateral to linea semilunaris
 - Ext oblique (easily separated from internal oblique in avascular plane)
 - Rectus flap can be advanced
 - 5cm epigastrum
 - 8-10cm middle
 - 3cm suprapubic

Rives-Stoppa Repair

Open Components Separation

![Diagram of Rives-Stoppa Repair and Open Components Separation]
Open Component Separation

- Rectus muscle medialization - restores dynamic abdominal wall function
- Cosmetic improvement - excision of excess tissue
- Drawback – large flap dissection with devascularization

Minimally Invasive Component Separation

- Rectus Abdominis Perforators Preservation
- Significantly Reduces Wound Complications

When laparoscopic approach is not an option

![Images of surgical outcomes]

When laparoscopic approach is not an option

![Images of surgical outcomes]
When laparoscopic approach is not an option

enterocutaneous fistula

enenterocutaneous fistula

When laparoscopic approach is not an option
When laparoscopic approach is not an option

<table>
<thead>
<tr>
<th>![Image 1]</th>
<th>![Image 2]</th>
</tr>
</thead>
</table>

![CT Scan Image 1] ![CT Scan Image 2]