Approach to the Wheezing Child

Elizabeth D. Allen, M.D.
Pediatric Pulmonology
Children's Hospital

The Problem: “Wheezing”

- Very common
- Multiple sounds and descriptions
- Broad differential

Educational Goals

- List causes of wheezing in children
- Outline a strategy for the initial assessment and treatment of a “typical” child with wheezing
- Outline a strategy for addressing sub-optimal responders
- Recognize wheezing child “red flags”

Uncommon Causes of Childhood Wheezing

- Large airway obstruction (congenital)
 - Vascular ring
 - Tracheomalacia
 - Tracheal stenosis
- Large airway obstruction (acquired)
 - Foreign body
 - Mediastinal mass
 - Endobronchial tumor
- Abnormal GI - airway anatomy
Uncommon Causes of Childhood Wheezing

- Persistent airway infection states
 - Cystic fibrosis
 - Immunoglobulin deficiency
 - Dysmotile cilia syndromes
- Cardiac failure

Common Causes of Childhood Wheezing

- Recurrent
 - ASTHMA, ASTHMA, ASTHMA
 - “Infantile asthma” & post-RSV wheezing
 - Asthma complicated by persistent triggers
 - Aspiration disorders (Infants)
 - Vocal Cord Dysfunction (Older child)

Common Causes of Childhood Wheezing

- Single episode
 - VIRAL
 - “First event” asthma presentation

Goals of Initial Evaluation

- Screen for “red flags”
- Assess for symptom pattern c/w asthma
- Screen for alternate clinical problems which might cause wheeze, or make asthma control difficult
Tools for Evaluation: a Good History

<table>
<thead>
<tr>
<th>Description of onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present since birth</td>
</tr>
<tr>
<td>Onset in infancy</td>
</tr>
<tr>
<td>Onset in later childhood</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description of wheeze</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspiratory v.s. expiratory</td>
</tr>
<tr>
<td>Intermittent v.s. daily</td>
</tr>
<tr>
<td>Associated symptoms</td>
</tr>
<tr>
<td>Rattling</td>
</tr>
<tr>
<td>Cough</td>
</tr>
<tr>
<td>Retractions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triggers</th>
</tr>
</thead>
<tbody>
<tr>
<td>URI’s, cold air, exercise, allergen exposure, smoke exposure</td>
</tr>
<tr>
<td>Eating, lying down</td>
</tr>
<tr>
<td>“No apparent reason”</td>
</tr>
<tr>
<td>It never changes</td>
</tr>
<tr>
<td>Began following choking episode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Past Medical History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal history</td>
</tr>
<tr>
<td>State of birth (CF screening?)</td>
</tr>
<tr>
<td>Major health issues</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family history</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social history (smoke exposure, pets)</td>
</tr>
</tbody>
</table>
Tools for Evaluation: a Good History

- ROS
 - GERD markers/ feeding difficulty
 - Chronic nasal discharge
 - Eczema
 - Poor growth
 - Chronic diarrhea

Tools for Evaluation: a Good Physical Exam

- Presence of:
 - Non-physiologic heart murmurs
 - Liver enlargement
 - Clubbing

Tools for Evaluation: a Good Physical Exam

- General growth/health
- Upper respiratory infection signs
- Upper respiratory allergy signs
- Pulmonary exam
 - High pitched versus rhonchorous sounds
 - Variability of sound
 - Location of sound

*Persistent unilateral location

Initial Testing: CXR

- Typical: normal, peribronchial thickening, hyperinflation
- Atypical: Asymmetric inflation, large heart, dense or extensive infiltrates
Initial Testing: PFT’s

- Obstructive changes on initial spirometry that improve following a bronchodilator establishes an asthma diagnosis
- Spirometry can also help estimate asthma severity

PFT Testing Limitations

- Most asthmatics develop symptoms prior to age 5 years.
- Most cannot perform quality spirometry until age 6 years.
- Childhood asthmatics usually have normal spirometry when “well”

Initial Assessment

- **Red Flags:**
 - Initial symptoms associated with choking episode
 - Poor growth, clubbing, chronic diarrhea
 - Findings suggestive of heart failure
 - Monotonous wheezing, truly “present from birth”
 - Atypical CXR

Initial Approach:

Trial of Asthma Therapy

- Bronchodilators*
- Oral steroids*
- (Controller therapy)

* Failure to respond to combination suggests problem is NOT asthma
What about Controller Therapy Trial?

- Clear response/improvement to controller therapy can help establish a diagnosis of asthma in a child with typical symptoms

Controller Therapy Trial Limitations

A failure of improvement may indicate:
- Medication chosen was not “potent” enough
- Montelukast trials
- Low dose ICS trials
- Medication was not used long enough
- Medication was not actually inhaled

ICS Delivery in Young Children

Asthma Therapy Responders: Ongoing Management

- Establish clear plan for response to acute symptoms
- If symptoms are frequent (or repeatedly severe) begin controller therapy
- Titrate controller therapy according to disease severity/level of control
Approach to Initial Responders Who are in Poor Control

- Review adequacy of controller dosing
- Review medication usage
 - Technique problems
 - Compliance problems
- In older child, obtain PFT’s

Advanced Approach: Infants

- Trial of GERD Therapy (BID PPI)
- Videoswallow study
- UGI?
- Sweat test
- Allergy testing

Approach to Ongoing Poor Control, and “Partial Responders”

- Advanced Approach: Look for and address problems that persistently irritate airways:
 - Smoke exposure
 - Infants: dysphagia, GERD, food allergy
 - Older children: Allergen exposure, chronic sinusitis, GERD

Advanced Approach: Older Child

- Trial of GERD Therapy (up to BID PPI)
- Prolonged antibiotics for sinus disease
- Sinus CT
- Allergy testing
- Pulmonary function testing
Treatment Red Flags – Consider Referral

- Failure to respond to beta-agonist and oral steroid trial
- Failure to achieve control despite:
 - Adequate controller therapy
 - Addressing common complicating disorders
- Persistently abnormal lung function studies

Approach to the Wheezing Child

Meredith N. Merz, M.D.
Pediatric Otolaryngology
Nationwide Children’s Hospital
Columbus, Ohio

Summary

- Wheezing is common in childhood
- Recurrent wheezing is usually due to asthma
- Initial approach establishes whether the history, and therapeutic response, is consistent with asthma
- If asthma therapy is unsuccessful, look for common inflammation-contributing co-morbidities
- Watch for red flags - if found, consider referral

Nonbronchospasm Related Wheezing

- When symptoms are atypical, consider other causes for persistent wheezing:
 - Wheezing that is poorly responsive to medical treatment
 - Wheezing that returns after withdrawal of medications
 - Unilateral wheezing
 - Barky/ Croupy cough, especially in a young infant
 - Symptoms that are worse during eating
 - Reflex apnea
 - Recurrent pneumonias or infections
Nonbronchospasm Related Wheezing

<table>
<thead>
<tr>
<th>Anatomic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Primary Tracheomalacia</td>
</tr>
<tr>
<td>✓ Secondary Tracheomalacia</td>
</tr>
<tr>
<td>✓ Tracheal stenosis</td>
</tr>
<tr>
<td>✓ Tracheal masses</td>
</tr>
<tr>
<td>✓ Bronchomalacia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neurologic:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Vocal cord paralysis</td>
</tr>
<tr>
<td>✓ Vocal cord dysfunction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Airway Foreign Body</td>
</tr>
</tbody>
</table>

Normal Airway

![Normal Airway](image)

Diagnostic Evaluation

- Nasopharyngoscopy allows evaluation to the level of the larynx and limited evaluation of the subglottic airway
- Rigid bronchoscopy allows evaluation of the tracheal and bronchial airways
- Imaging may be useful in some cases
 ✓ 3-D Reconstructions

Tracheomalacia

- Classification system described by Benjamin in 1984:
 I. Primary tracheomalacia
 II. Secondary tracheomalacia
 A. Tracheoesophageal fistula and esophageal atresia
 B. External compression (vascular/cardiac/neoplastic)
 C. Boney thorax abnormality (i.e. pectus excavatum)
 D. Dyschondroplasia
Tracheomalacia and Tracheobronchomalacia

- Flaccidity of the tracheal/bronchial cartilage leading to collapse of the airway
 - Collapse occurs during expiration
 - More pronounced with increased airflow
 - May be primary or secondary
- Cartilaginous to membranous ratio may be significantly decreased
- Incidence of primary tracheomalacia is about 1 in 2100

Tracheomalacia

- **Symptoms:**
 - Tracheal wheeze/Expiratory wheeze or stridor
 - Harsh, barking cough/“Brassy” cough
 - Failure to thrive
 - Increasing respiratory distress with growth
 - Transmitted vibration through the back
 - Difficulty clearing secretions
 - Symptoms exacerbated with viral infections

Primary Tracheomalacia

- **Diagnosis:** Bronchoscopy

Primary Tracheomalacia

- **Diagnosis:** CT Chest
Primary Tracheomalacia Treatment

- Supportive care
 - Disease resolves between ages 2-5 years
- Medical treatment
 - Only to help manage concomittant issues
- CPAP/ BiPAP
- Tracheotomy
- Airway stenting

Secondary Tracheomalacia Vascular Compression

<table>
<thead>
<tr>
<th>I. Aberrant innominate artery</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. Vascular Rings</td>
</tr>
<tr>
<td>A. Double aortic arch</td>
</tr>
<tr>
<td>B. Right aortic arch with left ligamentum arteriosum</td>
</tr>
<tr>
<td>III. Pulmonary artery sling</td>
</tr>
<tr>
<td>IV. Aberrant right subclavian artery</td>
</tr>
<tr>
<td>V. Congenital cardiac defects</td>
</tr>
</tbody>
</table>

Secondary Tracheomalacia Tracheoesophageal Fistula

- TEF occurs in 1 in 3000 to 5000 live births
- Often involves trachea and both main bronchi
- Symptoms are the same as for primary tracheomalacia
- Associated tracheomalacia often remains after repair of TEF due to cartilage deficiency in the area

Secondary Tracheomalacia Vascular Compression

- Symptoms:
 - Tracheal wheezing or stridor 100%
 - Chronic cough 14-75%
 - Recurrent pneumonia 47-56%
 - Dysphagia 14-25%
 - Reflex apnea 30-70%
 - Failure to thrive 11%

Reflex Apnea

- “Dying Spells” or Acute Life Threatening Events (ALTEs)
- Proposed that these events are reflex respiratory arrests due to irritation of the compressed trachea
- May occur when food bolus passes through esophagus, causing the posterior membranous trachea to bulge forward and narrow the airway further

Aberrant Innominate Artery

- Leftward origin of the innominate artery (brachiocephalic trunk) is common variant of normal anatomy
- Bronchoscopic findings:
 - Pulsatile anterior compression of the trachea, worse on the right side of the trachea
 - Right radial pulse diminishes with anterior pressure by bronchoscope

Aberrant Innominate Artery

- Expectant Management
 - Humidification, Supplemental oxygen, treatment of infection
- Surgical Management- Aortopexy
 - Absolute Indication: Reflex apnea
 - Relative Indications: Repeated infection with poor medical response, Exercise intolerance
- Tracheomalacia may still be present after compression is relieved
Double Aortic Arch

- Bifurcation of the ascending aorta that surrounds the trachea and esophagus, then rejoins to form the descending aorta

Double Aortic Arch

- Symptoms begin by age 3 months
 - Stridor, worse with feeding
 - Dysphagia, especially to solids
 - Cyanosis
 - Recurrent respiratory infections
- Bronchoscopy shows “teardrop” appearance of tracheal lumen
- CT with contrast will show ring and which limb of aorta is dominant

Double Aortic Arch

- Surgical treatment requires division of nondominant arch with or without aortopexy
- Tracheomalacia can persist after surgical correction

Right-Sided Aortic Arch

With left descending aorta and left ligamentum arteriosum

With aberrant left subclavian artery and left ligamentum arteriosum

Pulmonary Artery Sling

• Occurs because of an anomalous origin of the left pulmonary artery

Pulmonary Artery Sling

• Typically produce early and severe symptoms
• Half of patients with pulmonary artery sling have associated tracheobronchial malformations
 ✓ Most common: Complete tracheal rings
• Treatment:
 ✓ Surgical division and reimplantation of the anomalous left pulmonary artery
 ✓ Correction of associated tracheal anomalies

Tracheal Stenosis

• Complete tracheal rings
 ✓ Normal trachea has membranous posterior wall
 ✓ Complete cartilaginous rings result in narrowing of trachea to varying degree
 ✓ May involve single ring to entire tracheal length
• Tracheal cartilaginous sleeve

Tracheal Stenosis

- Symptoms may be present at birth or start after acute illness or other insult
 - Wheezing or stridor
 - Cough
 - Recurrent croup
 - Recurrent respiratory infections
 - Difficulty clearing secretions

Complete Tracheal Rings

Endoscopy

![Endoscopy Images]

Radiography

![Radiography Images]
Complete Tracheal Rings Treatment

- Surgical management is indicated for:
 - Significant respiratory symptoms
 - ALTEs
 - Need for intubation
 - Repeated respiratory infection
 - Failure to wean from ventilatory support
- Operative management is typically pursued when stenotic segment is less than 40% of normal tracheal diameter

Tracheal Masses

- Primary tracheal and bronchial tumors are rare
 - 64-90% are benign
 - Benign tumors more commonly in the proximal trachea
 - Malignant tumors more commonly in the distal trachea
- Symptoms:
 - Wheezing
 - Stridor
 - Cough
 - Dyspnea
 - Hemoptysis

Treatment Options

- Patch tracheoplasty
- Cartilage
- Pericardium
- Tracheal sleeve resection
- Slide tracheoplasty

Complete Tracheal Rings Treatment

- Treatment Options
 - Patch tracheoplasty
 - Cartilage
 - Pericardium
 - Tracheal sleeve resection
 - Slide tracheoplasty

Complete Tracheal Rings Treatment

- Treatment Options
 - Patch tracheoplasty
 - Cartilage
 - Pericardium
 - Tracheal sleeve resection
 - Slide tracheoplasty

Tracheal and Bronchial Masses

- Benign:
 - Papilloma
 - Fibroma
 - Hemangioma
 - Hamartoma

- Malignant:
 - Malignant fibrous histiocytoma
 - Mucoepidermoid carcinoma
 - Adenoid cystic carcinoma
 - Rhabdomyosarcoma
 - Squamous cell carcinoma
 - Bronchogenic carcinoma

Neurologic Causes of Wheezing

<table>
<thead>
<tr>
<th>• Vocal Cord Paralysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Can be congenital or acquired</td>
</tr>
<tr>
<td>✓ Unilateral or Bilateral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Vocal Cord Dysfunction</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Paradoxical vocal cord movement</td>
</tr>
<tr>
<td>✓ Paradoxical vocal cord dysfunction</td>
</tr>
</tbody>
</table>

Vocal Cord Paralysis

<table>
<thead>
<tr>
<th>• Accounts for 10% of congenital laryngeal lesions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>• Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Weak or abnormal cry</td>
</tr>
<tr>
<td>✓ Stridor or wheezing</td>
</tr>
<tr>
<td>✓ Dysphagia</td>
</tr>
<tr>
<td>✓ Chronic cough or cough during eating</td>
</tr>
</tbody>
</table>

Vocal Cord Dysfunction

<table>
<thead>
<tr>
<th>• The larynx exhibits paradoxical vocal cord motion, with vocal cord adduction during inspiration</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>• Symptoms:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Wheezing</td>
</tr>
<tr>
<td>✓ Dyspnea</td>
</tr>
<tr>
<td>✓ Cough</td>
</tr>
<tr>
<td>✓ Throat tightness</td>
</tr>
<tr>
<td>✓ Shortness of breath</td>
</tr>
<tr>
<td>✓ Exercise intolerance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Common in asthmatics</th>
</tr>
</thead>
</table>

Vocal Cord Paralysis Etiology

<table>
<thead>
<tr>
<th>• Congenital</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Hydrocephalus</td>
</tr>
<tr>
<td>✓ Arnold-Chiari Malformation</td>
</tr>
<tr>
<td>✓ Myasthenia Gravis</td>
</tr>
<tr>
<td>✓ Cardiovascular anomalies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Acquired</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Trauma</td>
</tr>
<tr>
<td>✓ Infectious</td>
</tr>
<tr>
<td>✓ Supranuclear lesions (i.e. MS)</td>
</tr>
<tr>
<td>✓ Iatrogenic</td>
</tr>
<tr>
<td>✓ Idiopathic</td>
</tr>
</tbody>
</table>
Vocal Cord Dysfunction

Etiology

- Cortical injury
 ✓ Stroke
 ✓ ALS
- Brainstem compression
 ✓ Chiari malformation
- Conversion disorder
- Malingering
- Irritant-induced
 ✓ Solvents, Amonia, Smoke

Demographics

- Mean age at presentation: about 14 years
- 82-86% of patients are female
- Patients tend to be high functioning, participate in organized sports, have high level of social and life stressors
- Exercise often induces symptoms
- High association with GERD

Precipitating Factors:

- Exercise
 ✓ Especially when there is poor response to bronchodilators
- Psychological Conditions
 ✓ PTSD, Anxiety Disorder, Depression
- Irritants
- Rhinosinusitis
- GERD
- Medication use
 ✓ Phenothiazines

Diagnosis

- Can be difficult due to episodic nature
- Laryngoscopy during symptoms shows pathognomonic adduction of the vocal folds during inspiration
- Symptoms resolve when patient is distracted or asleep
- Wheezing is most prominent over the larynx and less notable in lung fields
- PFT’s are inconclusive due to high correlation with asthma

References:
Vocal Cord Dysfunction Treatment

<table>
<thead>
<tr>
<th>• Acute Phase:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Heliox</td>
</tr>
<tr>
<td>✓ CPAP</td>
</tr>
<tr>
<td>✓ Anxiolytic medications</td>
</tr>
<tr>
<td>✓ General anesthesia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Long-Term Management:</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Education</td>
</tr>
<tr>
<td>✓ Avoidance of known triggers</td>
</tr>
<tr>
<td>✓ Breathing for vocal cord dysfunction</td>
</tr>
<tr>
<td>✓ Relaxation of muscles of neck, shoulder, and chest</td>
</tr>
<tr>
<td>✓ Psychotherapy</td>
</tr>
</tbody>
</table>

Airway Foreign Body

<table>
<thead>
<tr>
<th>• Acute Phase- Choking or gagging episode</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>• Asymptomatic Interval- Foreign body becomes lodged and airway reflexes become fatigued</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>• Complications- Erosion, obstruction or infection occurs resulting in symptoms</th>
</tr>
</thead>
</table>

Airway Foreign Body

<table>
<thead>
<tr>
<th>• Presentation is variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ There is usually a choking or gagging event, however this may not be recognized or reported (present in about 80% of cases)</td>
</tr>
<tr>
<td>✓ Other symptoms include cough, wheezing, recurrent croup</td>
</tr>
<tr>
<td>✓ Symptoms may respond to “asthma” treatment, but recur after medications are stopped</td>
</tr>
<tr>
<td>✓ 85% of patients are younger than 5 years of age</td>
</tr>
</tbody>
</table>

Airway Foreign Body Diagnosis

<table>
<thead>
<tr>
<th>• Radiography</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ CXR may be normal, show radio-opaque foreign body, or hyperinflation</td>
</tr>
<tr>
<td>✓ Inspiratory and Expiratory views or Decubitus views</td>
</tr>
<tr>
<td>✓ CT with fine (<3 mm) cuts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Bronchoscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Gold standard for diagnosis</td>
</tr>
<tr>
<td>✓ High clinical suspicion with normal imaging does not rule out foreign body</td>
</tr>
</tbody>
</table>
Conclusions

- When symptoms are atypical, consider other causes for persistent wheezing
- ALTE’s raise concern for anatomic compression of the trachea, such as vascular ring or sling
- Tracheal narrowing may not become evident until exacerbated by a viral infection
- Vocal cord dysfunction often presents like poorly controlled asthma
- Airway foreign body may present as unilateral wheezing or as asthma that gets worse after medications are stopped