Evaluation of Patients with Chest Pain

Mark G. Moseley, MD, MHA, FACEP

Vincent Pestritto, MD

Acknowledgement

• Mark L. DeBard MD, FACEP
 ✓ Professor of Emergency Medicine
 ✓ Attending Emergency Physician, OSU University Hospital East
 ✓ Co-lecturer with Dr. Moseley for many years on the topic of chest pain evaluation in Emergency Medicine for medical students, residents, and faculty physicians.
Overview

- Chest pain risk stratification using the H and P, ECG, labs, and imaging
- Disease Specific Evaluations:
 - Acute Coronary Syndrome
 - Pulmonary Embolism
 - Aortic Dissection
 - Pneumothorax
 - Esophageal Rupture
 - Valvular Heart Disease
 - Pericardial/Myocardial Disease

The Challenge of Chest Pain

- Whether in the office, ED, or inpatient setting, the patient with chest pain presents a diagnostic dilemma
- You can not treat all patients with chest pain the same due to the broad differential diagnosis that ranges from benign causes to immediately life threatening events
- Must have a strategy that will help identify higher risk patients and differentiate them from lower risk patients
ED Chest Pain Disposition (%)

- 6 million ED Chest Pain Patients (6% of all ED patients)

Differential Diagnosis

Life Threatening
- ACS
- Pulmonary embolism
- Aortic dissection
- Tension pneumothorax
- Esophageal rupture
- Pericardial tamponade

Non-Life Threatening
- Muscular
- Skeletal
- Pneumonia
- Simple pneumothorax
- Pericarditis
- GERD
- Valvular heart disease
- Zoster
- Radiculopathy
Chest Pain Evaluation

- Things in common that can be useful for the evaluation of any patient with chest pain regardless of the setting:
 - History
 - Physical Exam
 - ECG
 - Lab Testing
 - Imaging

History

- Remains the cornerstone of diagnosis
- The importance of obtaining a thorough chest pain history cannot be over-emphasized
History

- Remains the cornerstone of diagnosis
- Specific characteristics of pain can help with better defining the differential diagnosis:
 - Chronicity
 - Onset
 - Duration
 - Intensity
 - Exacerbating factors
 - Remission/relieving factors
 - Associated symptoms

History

- It is helpful to key in on the patient’s own description of the pain:
 - Pain vs. discomfort
 - Pressure vs. sharp
 - Intensity at onset
 - Where is it located
 - Is the pain positional
 - What was the patient doing at the time
 - Worse with exertion
 - Worse with deep breaths
History

• Important to ask about associated symptoms that accompany the pain:
 ✓ Shortness of breath
 ✓ Nausea and/or vomiting
 ✓ Diaphoresis
 ✓ Syncope
 ✓ Dizziness or weakness
 ✓ Pain in other locations that might be related

History

• Does the patient have a previous medical history that is relevant?
 ✓ Known coronary artery disease
 • Previous re-vascularization?
 • Was there chest pain associated with that prior CAD event?
 • Is the current chest pain similar or different than previous chest pain?
 ✓ Hypertension
 ✓ Diabetes
 ✓ CVA/TIA
 ✓ Peripheral vascular disease
History

Risk Factors:
- Framingham risk factors (population based)
- Connective tissue diseases
- High potency stimulant use

Realize that risk factors only convey a lifetime statistical risk for disease processes:
- Presentation with chest pain has already selected for a higher risk group
- Don't ignore them totally

History

Avoiding Pitfalls:
- Don't discount risk solely based on age, gender, or lack of traditional risk factors
- Remember that some groups of patients tend to have atypical presentations:
 - Women
 - Elderly
 - Diabetics
- Focus the history on life threats first and then broaden to include less concerning causes
History

• Pearls:
 ✓ Abrupt onset think TAD, PE, PTX
 ✓ Pleuritic pain think pericarditis, PE, pneumonia
 ✓ Don’t rely on response to therapy like NTG or GI cocktails
 ✓ Radiation to jaw, arms, or neck increases likelihood of ACS
 ✓ Consider sudden onset of symptoms, associated syncope or near syncope, or CHF like symptoms associated with the chest pain to be high risk

Physical Exam

• Realize that most patients with chest pain will have a normal physical examination
• The physical exam should be used to make diagnosis more likely, not totally exclude a diagnosis:
 • The absence of a single physical exam sign or combination of signs lacks the sensitivity and specificity to exclude disease
• Don’t fixate on reproducible chest wall pain!
 • 15% of patients having an active AMI report a tender chest wall
Physical Exam

- Focus on vital signs, general appearance, and positive findings:
 - Clinical signs of CHF (S3/S4, JVD, fluid overload)
 - Friction rub (pericarditis)
 - New onset murmur (aortic dissection, AMI)
 - Hamman’s crunch (esophageal rupture)
 - Asymmetric pulses (aortic dissection)
 - Swollen extremities (PE, CHF)
 - Diaphoresis (non-specific, but concerning)

High Risk Features to the H and P

- Sudden onset of pain
- High risk associated symptoms:
 - SOB, diaphoresis, vomiting, syncope, etc.
- Exertional pain or persistent rest pain
- Abnormal vital signs
- Elderly patients and those with multiple co-morbid conditions
ECG

- You can classify the ECG based on ACC/AHA guidelines:
 - STEMI
 - NSTEMI/high risk unstable angina
 - Non-diagnostic
- The ECG is a slice in time only:
 - <50% of initial ECGs are diagnostic
 - Serial ECG’s recommended, but timing is unclear
 - Progression with AMI
 - Hyper-acute T-waves
 - STE
 - T-wave inversion
 - Q waves

ECG

- If the ECG is abnormal, its important to compare it to an older ECG if available;
 - Can be critical for conditions like bundle branch blocks (old vs. new) in the setting of new onset chest pain as it helps determine intervention
- In addition to ACS:
 - ECG changes in PE
 - ECG in TAD
 - ECG in pericarditis
 - Arrhythmias
Lab Testing

- In patients sick enough to come to the ED or be admitted for chest pain, patients usually require:
 - Basic chemistries
 - Complete blood count
- Based on the history and physical examination, utilize a targeted approach to laboratory testing:
 - Coagulation profile (if on coumadin), cardiac markers, d-dimer, BNP, LFT’s, Lipase
 - Tox screen if concern for high potency stimulant use

Lab Testing

- Cardiac Markers
 - Myoglobin
 - First to peak, non-specific
 - Good NPV
 - CK-MB
 - Former gold standard; supplanted by troponin
 - Elevation in muscle damage, renal failure, sepsis, CVA
 - Troponin
 - Prolonged elevation in serum (7-14 days)
 - More sensitive and specific for ACS than CKMB; detects micro infarcts
 - Elevated troponin in UA = 9x increase in death due to MACE
BNP:
- Helpful in the assessment of acute shortness of breath of unclear etiology or for assessment of CHF
- Know your lab assay
- Level <100 = unlikely CHF
- Level >500 = likely CHF
- Level between 100 and 500 = uncertain
 - Chronic elevation
 - Chronic renal insufficiency
 - Severe COPD with right sided failure
 - PE
 - Elderly women
Lab Testing

D-dimer:
- Helpful for the assessment of PE
- ELISA test preferred; know your lab assay
- Excellent sensitivity, but poor specificity
- Need to combine d-dimer testing with some assessment of pre-test probability
- Low or moderate pre-test probability and negative ELISA d-dimer, means you have excluded to the limits of testing
- If positive d-dimer, need to follow up with further definitive test like VQ scan or CTPA to exclude disease

Imaging

- Let the history and physical examination guide the decision about imaging
- Increasingly many options and difficult to apply the available literature to the patient sitting in front of you:
 - CT coronary angiogram with calcium scoring
 - Cardiac MRI with vasodilator stress
 - 80 lead ECG vest with regional pain mapping
Imaging

• For most patients that are being assessed for chest pain, the PA and Lateral Chest X-Ray remains quite useful:
 ✓ Good screening test for many conditions
 ✓ Assessment of vasculature, lungs, bones, etc.
 ✓ Can provide alternative diagnoses in some cases
• Be cautious about sensitivity and specificity and using the CXR to “rule out” diagnoses
• Better to utilize to “rule in” based on findings of the examination

Acute Coronary Syndrome
Acute Coronary Syndrome

• ECG:
 ✓ You can classify the ECG based on ACC/AHA guidelines:
 • STEMI
 • NSTEMI/high risk unstable angina
 • Non-diagnostic
 ✓ The ECG is a slice in time only:
 • Serial ECG’s recommended, especially if the patient’s symptoms change

Acute Coronary Syndrome

• ECG
 ✓ Normal ECG does not rule out ACS
 • A circumflex MI may be ECG-”silent”
 ✓ Review AMI ECGs and anatomic lesions:
 • Anterior = LAD
 • Lateral = Circumflex, diagonal
 • Anterolateral = LAD or Left Main
 • Inferior = RCA (90%), Circumflex (10%)
 • Posterior = Usually RCA; associated with inferior, lateral AMI
LAD STEMI

Inferior STEMI
Acute Coronary Syndrome

- **LEVEL 1: ST ELEVATION MI (STEMI)**
 - ST-segment elevation or presumed new LBBB is characterized by ST-segment elevation 1 mm in 2 or more contiguous precordial leads or 2 or more adjacent limb leads.

- **LEVEL 2: HIGH RISK UA/NON-ST ELEVATION MI (NSTEMI)**
 - Ischemic ST-segment depression 0.5 mm or dynamic T-wave inversion with pain or discomfort. Transient ST-segment elevation 0.5 mm for 20 minutes is also included in this category.

- **LEVEL 3: INTERMEDIATE OR LOW RISK UA**
 - Normal or non-diagnostic changes in ST segment or T waves are inconclusive and require further risk stratification. This classification includes patients with normal ECGs and those with ST-segment deviation of 0.5 mm or T-wave inversion. Serial cardiac studies (and functional testing) are appropriate.

Clinician’s Guide to ACS

- Imperative to follow some sort of evidence based strategy for acute coronary syndrome.

- Lots of literature to guide practice, but hard to keep up with.

- Algorithmic approach that standardizes care and minimized practice deviation.
Acute Coronary Syndrome

- **Cardiac Marker Summary:**
 - No marker is 100% sensitive all the time
 - Troponin is the gold standard for AMI diagnosis
 - Patients with positive markers have distinctly higher all cause morbidity and mortality in the literature
 - Cardiac marker analysis should not delay coronary intervention in high risk patients (STEMI)

Acute Coronary Syndrome

- **Non-Invasive Testing:**
 - Numerous studies show the prognostic value of stress testing to help risk stratify chest pain patients
 - Negative stress
 - 2% with MACE at 6 month
 - Positive or inconclusive stress
 - 17% with MACE
 - Combining treadmill or pharmacologic stress with nuclear imaging or echocardiography greatly increases sensitivity.
 - Modality less important than timing of testing
 - Testing is more sensitive if patient actually having symptoms at the time of testing
Acute Coronary Syndrome

• CT Coronary Angiogram:
 ✓ In setting of acute chest pain, pt should be low risk
 ✓ Non-inferior to stress nuclear imaging in low risk ED chest pain patients:
 • Stress nuclear imaging:
 – Sensitivity=71%, Specificity=90%, NPV=97%
 • Multidetector CT:
 – Sensitivity=86%, Specificity=92%, NPV=99%
 ✓ What's the physiological significance of lesions it finds?
 ✓ Radiation exposure and cost for low risk patients?

Acute Coronary Syndrome

• Cardiac Catheterization:
 ✓ Considered the gold standard for ACS diagnosis
 • Anatomical and functional assessment
 • Can fix what you find (PCI)
 • Variability in lesion designation (visual assessment)
 • Some centers now using IV ultrasound to look at plaque stability
 ✓ Complications
 • ATN from IV dye load
 • Bleeding (groin hematoma, RP bleed)
 • Pseudoaneurysm
Acute Coronary Syndrome

• Treatment:
 ✓ Protocol based diagnostic and treatment algorithm:
 • IV, Oxygen, Cardiac Monitor (or call 911)
 • CXR, cardiac markers, other labs
 • ASA (if they have a chest, given them ASA)
 – Chewed, 162-325 mg unless taken
 – Clopidogrel if true ASA allergy

Acute Coronary Syndrome

• Treatment
 ✓ Nitroglycerin
 • 0.4 mg SL q 5 min X 3
 • IV drip if needed for CP, HTN, CHF
 • Not if BP <90, HR <50, RV MI
 ✓ Beta Blocker
 • Should be used, but timing?
 ✓ Morphine
 • Should it be used?
 ✓ Others
 • ACE, statin important, but not acutely
Acute Coronary Syndrome

• Treatment
 ✓ Anticoagulation
 • Anticoagulate high risk ACS patients aggressively
 – Don’t give high risk therapies to low risk groups
 – Know local practices, but remember that guidelines are increasingly national and expected
 • Positive troponin and ECG changes should get
 – ASA
 – Heparin/LMWH
 – Clopidogrel
 – Glycoprotein IIb/IIIa Inhibitor

Acute Coronary Syndrome

• ACS Treatment Summary
 ✓ STEMI
 • ASA, NTG, B-blocker, UFH/LMWH, Clopidogrel, IIb/IIIa Inhibitor
 • Thrombolytics or PCI
 • Disposition = ICU
 ✓ NSTEMI/High Risk UA
 • ASA, NTG, B-blocker, UFH/LMWH, Clopidogrel, IIb/IIIa Inhibitor
 • Disposition = ICU
 ✓ Some Risk for UA
 • ASA, NTG, +/- on B-blocker
 • Disposition: Floor telemetry admission vs. short stay unit (depends on local resources)
Cocaine Associated Chest Pain

- Very common in the ED patient population
- Acute intoxication causes vasospasm, inflammatory mediator release, platelet aggregation
- ACS can result
- Treatment = routine ACS + lorazepam
 ✓ Exception = concern over use of beta blockers – this may worsen vasoconstriction and hypertension
- Conservative management in most cases

Pulmonary Embolism
Pulmonary Embolism

• Diagnostic:
 ✓ Physical exam is unreliable
 • Hohman’s sign
 ✓ Symptoms from HPI helpful like dyspnea, rapid heart rate, palpitations, pleurisy, hemoptysis, calf pain, etc.
 ✓ Literature strongly supports some type of structured pre-test probability assessment
 • Well’s Criteria
 • Charlotte Rule

Pulmonary Embolism

• D-dimer:
 ✓ Helpful for the assessment of PE
 ✓ ELISA test preferred; know your lab assay
 ✓ Excellent sensitivity, but poor specificity
 ✓ Need to combine d-dimer testing with some assessment of pre-test probability
 ✓ Low or moderate pre-test probability and negative ELISA d-dimer, means you have excluded to the limits of testing
 ✓ If positive d-dimer, need to follow up with further definitive test like VQ scan or CTPA to exclude disease
Pulmonary Embolism

• Diagnostic:
 ✓ DVT
 • Duplex Ultrasonography
 – Non-invasive and first line
 – More sensitive proximally
 – Serial exams necessary?
 – Availability
 • Venography
 – Gold standard (does anyone do this?)
 – CTV often combined with CTA

Pulmonary Embolism

• Diagnostic:
 ✓ PE
 • VQ Scan – have to do structured PTP assessment
 – PIOPED I
 – Low PTP and normal or very low prob = essentially rules out PE
 – High PTP and high prob = rule in PE
 – Anything else needs further testing
 • CT scan – high quality scanner and radiologist
 – PIOPED II
 – Study of choice; often gives alternative diagnosis
 – Literature unclear what to do with negative CTA when you have a high PTP
Pulmonary Embolism

• Diagnostic:
 ✓ PE
 • CT Scan
 – Can increase sensitivity if combining CTA with CT venography
 – Helps define pelvic vein VTE, and can catch proximal femoral DVT
 • Pulmonary Angiography
 – Gold standard
 – Not available
 – Not trivial morbidity

Pulmonary Embolism

• Treatment:
 ✓ Anticoagulate with UFH or LMWH
 • LMWH superior for treatment of DVT
 • Unclear about PE; safe to use, but many still start with UFH
 ✓ IVC filter to prevent further clot in those with contra-indications to anticoagulation
 ✓ Thrombolytics or surgical embolectomy for massive PE and hemodynamic instability
 • Immediate consultation with ICU and cardiothoracic surgery if available
Aortic Dissection

- Path:
 - Sheer stress leads to intimal tear
 - Risk factors:
 - Hypertension (most common)
 - Trauma
 - Pregnancy
 - Coarctation
 - Bicuspid AV
 - High potency stimulants
 - Syphilis
Aortic Dissection

<table>
<thead>
<tr>
<th>Stanford</th>
<th>DeBakey</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Type A</td>
<td>• Type I</td>
</tr>
<tr>
<td>✓ Any involvement of ascending aorta</td>
<td>✓ Ascending and descending aorta</td>
</tr>
<tr>
<td>• Type B</td>
<td>✓ Ascending only</td>
</tr>
<tr>
<td>✓ Limited to descending aorta</td>
<td>✓ Descending only</td>
</tr>
</tbody>
</table>

Aortic Dissection

- **Clinical:**
 - ✓ Sudden onset of intense, ripping, tearing pain that often is in the chest radiating to the back or abdomen (suspect when pain above and below diaphragm)
 - ✓ Absent pulses, discrepancy in UE/LE BP, ischemic limb
 - ✓ New murmur of AR
 - ✓ Cardiac tamponade
 - ✓ Neuro symptoms like CVA, syncope, cauda equina syndrome
 - ✓ Mesenteric ischemia
Aortic Dissection

Diagnostic:
- ECG
 - Beware AMI mimic; beware anticoagulation
- CXR
 - More helpful in trauma; normal CXR not sensitive enough to rule out the diagnosis
 - Review classic findings in trauma
- CT scan with IV contrast
 - Study of choice in stable patient

- Conventional angiography
 - Gold standard, but not readily available
 - Being supplanted by CTA
- Echocardiography
 - TTE helpful to rule out complications but not great sensitivity
 - TEE is the test of choice for unstable patient; often done perioperatively
 - Dubious availability even with cardiology back up
Aortic Dissection

- **Treatment:**
 - Closed HD monitoring; arterial line
 - Control BP (<120 SBP) and HR (<60)
 - Beta blockers are mainstay
 - Prevent shear stress and further tear
 - Classic combination is esmolol and nitroprusside
 - Classic dictum of Stanford A managed surgically and Stanford B managed medically
 - Blurred with new stent grafts and PCI?

Pneumothorax
Pneumothoraxic

- Sudden onset of sharp unilateral chest pain
- Traumatic usually obvious by history and part of standard trauma evaluation
- Spontaneous 1:13,000; 6x more common in young males
- Treatment depends on size:
 - Observation
 - Small lumen catheters
 - Heimlich valves
 - Traditional tube thoracostomy for all larger PTX

Esophageal Rupture
Esophageal Rupture (Boerhaave’s Syndrome)

- History is usually protracted vomiting, followed by severe chest pain and dysphagia:
 - Constant pain; usually much worse with swallowing
 - Dyspnea also common
 - If late presentation, patients are critically ill
 - Commonly described in alcoholics
 - 92% iatrogenic or trauma, 8% spontaneous
- Hammond’s Crunch:
 - Cellophane sound of mediastinum due to SQ emphysema
- Pneumomediastinum, Left pleural effusion
- Gastrograffin swallow, CT, antibiotics, OR, ICU

Valvular Heart Disease
Mitral Valve Prolapse

Path
- Familial incidence
- Increased risk of dysrhythmia, endocarditis, sudden death

Clinical
- Atypical chest pain and palpitations; advanced disease leads to MVR

Treatment
- Beta blockers help for atypical chest pain and palpitations

Aortic Stenosis

Path
- $<65 =$ rheumatic HD and congenital bicuspid
- $>65 =$ calcifications
- Obstruction of LV outflow track lead to CHF and sudden death

Clinical
- Classic triad of angina, dyspnea, and syncope
- Harsh murmur with radiation to carotids

Treatment
- Extreme caution with preload/afterload reduction (get help with acutely decompensated patients)
- Valvuloplasty stabilizing, replacement definitive
Pericarditis

- **Path**
 - Idiopathic (most common)
 - Infectious (viral, TB was classic cause)
 - Malignancy (lung and breast)
 - Drug induced (procainamide, hydralazine)
 - Post radiation
 - Post MI (Dressler’s syndrome)
 - Uremia
 - Connective tissues (RA, lupus)
Pericarditis

Clinical
- Sharp, stabbing, pleuritic CP
- Worse with supine, better when sitting up
- Friction rub (classic) but usual transient and difficult to auscultate
- Viral symptoms (low grade fever, malaise, URI symptoms)
- Usually tachycardic

ECG
- Electrical alternans with big effusions
- First stage = ST elevation, PR depression
- Second stage = ST isoelectric
- Third stage = T wave inversion
- Fourth stage = resolution
- **BEWARE OF MIMIC TO AMI!**

CXR
- Limited value (alternative diagnosis)
- With acute effusion can have normal silhouette
Pericarditis

• Diagnostic
 ✓ Echocardiogram
 • Everyone with pericarditis eventually needs this to rule out significant effusion
 • Tamponade is associated with right heart diastolic collapse
 • Remember that tamponade is a clinical diagnosis (muffled heart sounds, hypotension, JVD)
 ✓ Lab tests
 • Somewhat dependent on suspicion of etiology
 • Cardiac markers? Can have small troponin leak
 • ESR and CRP are non-specific but usually elevated
Pericarditis

<table>
<thead>
<tr>
<th>• Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ NSAIDs unless contra-indicated</td>
</tr>
<tr>
<td>✓ Not steroids in most cases</td>
</tr>
<tr>
<td>✓ Recent studies show colchicine helpful</td>
</tr>
<tr>
<td>✓ Pericardiocentesis or pericardial window for tamponade</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Disposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Depends</td>
</tr>
<tr>
<td>✓ Classically outpatient management</td>
</tr>
</tbody>
</table>

Myocarditis

<table>
<thead>
<tr>
<th>• Path</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Inflammation of heart muscle</td>
</tr>
<tr>
<td>✓ Broad range of etiologies</td>
</tr>
<tr>
<td>✓ Most common etiology in U.S. is viral (enteroviruses and echoviruses)</td>
</tr>
<tr>
<td>✓ Most common worldwide is parasitic</td>
</tr>
<tr>
<td>✓ Often mixed pericarditis and myocarditis picture</td>
</tr>
</tbody>
</table>
Myocarditis

Clinical
- Cardiac symptoms 7-14 days following viral illness (URI or GE)
- CP reflects pericardial irritation
- Fatigue, DOE
- Fever, tachycardia out of proportion to fever
- CHF and pulmonary edema in severe cases

Diagnostic
- ECG
 - Sinus tach, dysrhythmias, acute LVH
- CXR
 - cardiomegaly
- Echo
 - Best single test; also evaluates for complications like pericardial effusion
 - Many centers now using cardiac MRI
- Lab tests
 - Often elevated cardiac markers
 - ESR and CRP usually elevated, but non-specific
Myocarditis

- **Treatment**
 - Primarily supportive and monitoring for complications
 - Antimicrobials if appropriate for infectious etiology
 - Steroids, IVIG, and antiviral agents are all controversial
 - Treatment of heart failure if present
 - LVAD and cardiac transplantation in severe cases

Other Etiologies of Chest Pain
Hypertension

- Significant hypertension in conjunction with hypertensive heart disease can manifest at chest pain
- This is alleviated with reduction of blood pressure
- It is important to exclude co-existing coronary artery disease in these patients as presentation may be very similar
- Patients with HTN and diastolic dysfunction are prone to chest pain when blood pressure is uncontrolled

GERD / Esophagitis

- A not entirely uncommon manifestation of GERD is atypical chest pain
- Depending on the person, rather than classic “heartburn,” “chest pain” may be the presenting symptom
- Something to consider once more worrisome chest pain causes are excluded and to clinically correlate with overall presentation
- Consideration for empiric therapy and EGD/GI evaluation
GERD / Esophagitis

- **Things to remember:**
 - Do NOT assume chest pain is from GERD in a patient with a history of GI complaints
 - Urgent / life-threatening causes MUST be excluded first
 - Do NOT assume pain relief from Maalox, GI cocktail, etc, correlates to a GI cause of the pain
 - This is similar to reproducible chest pain – it may still be from coronary ischemia / angina

Esophageal Spasm

- This is a somewhat controversial entity in regards to correlation with chest pain
- Occasional correlation between evaluation with manometry and chest pain
- Occasional relief with calcium channel blockers
- This is a difficult diagnosis to evaluate and should be done in conjunction with gastroenterology in the appropriately selected patient population
Costochondritis

- Inflammation of the cartilage at the rib/sternum junction
- More common in women than men
- “Tietze’s syndrome” if significant inflammation at the rib/sternum cartilaginous region with possible overlying erythema
- Diagnosis is clinical with tenderness to palpation seen
- It is important to know that angina can have reproducible chest wall pain and distinguishing these two conditions is imperative
- Treatment is supportive and with NSAIDs