Evaluation of Patients with Chest Pain

Mark G. Moseley, MD, MHA, FACEP

Vincent Pestritto, MD

Overview

- Chest pain risk stratification using the H and P, ECG, labs, and imaging
- Disease Specific Evaluations:
 - Acute Coronary Syndrome
 - Pulmonary Embolism
 - Aortic Dissection
 - Pneumothorax
 - Esophageal Rupture
 - Valvular Heart Disease
 - Pericardial/Myocardial Disease

Acknowledgement

- Mark L. DeBard MD, FACEP
 - Professor of Emergency Medicine
 - Attending Emergency Physician, OSU University Hospital East
 - Co-lecturer with Dr. Moseley for many years on the topic of chest pain evaluation in Emergency Medicine for medical students, residents, and faculty physicians.

The Challenge of Chest Pain

- Whether in the office, ED, or inpatient setting, the patient with chest pain presents a diagnostic dilemma
- You can not treat all patients with chest pain the same due to the broad differential diagnosis that ranges from benign causes to immediately life threatening events
- Must have a strategy that will help identify higher risk patients and differentiate them from lower risk patients
ED Chest Pain Disposition (%)

- 6 million ED Chest Pain Patients (6% of all ED patients)

Differential Diagnosis

<table>
<thead>
<tr>
<th>Life Threatening</th>
<th>Non-Life Threatening</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ACS</td>
<td>✓ Muscular</td>
</tr>
<tr>
<td>✓ Pulmonary embolism</td>
<td>✓ Skeletal</td>
</tr>
<tr>
<td>✓ Aortic dissection</td>
<td>✓ Pneumonia</td>
</tr>
<tr>
<td>✓ Tension pneumothorax</td>
<td>✓ Simple pneumothorax</td>
</tr>
<tr>
<td>✓ Esophageal rupture</td>
<td>✓ Pericarditis</td>
</tr>
<tr>
<td>✓ Pericardial tamponade</td>
<td>✓ GERD</td>
</tr>
<tr>
<td></td>
<td>✓ Valvular heart disease</td>
</tr>
<tr>
<td></td>
<td>✓ Zoster</td>
</tr>
<tr>
<td></td>
<td>✓ Radiculopathy</td>
</tr>
</tbody>
</table>

Chest Pain Evaluation

- Things in common that can be useful for the evaluation of any patient with chest pain regardless of the setting:
 ✓ History
 ✓ Physical Exam
 ✓ ECG
 ✓ Lab Testing
 ✓ Imaging

History

- Remains the cornerstone of diagnosis
- The importance of obtaining a thorough chest pain history cannot be over-emphasized
History

- Remains the cornerstone of diagnosis
- Specific characteristics of pain can help with better defining the differential diagnosis:
 - Chronicity
 - Onset
 - Duration
 - Intensity
 - Exacerbating factors
 - Remission/relieving factors
 - Associated symptoms

History

- Important to ask about associated symptoms that accompany the pain:
 - Shortness of breath
 - Nausea and/or vomiting
 - Diaphoresis
 - Syncope
 - Dizziness or weakness
 - Pain in other locations that might be related

History

- It is helpful to key in on the patient’s own description of the pain:
 - Pain vs. discomfort
 - Pressure vs. sharp
 - Intensity at onset
 - Where is it located
 - Is the pain positional
 - What was the patient doing at the time
 - Worse with exertion
 - Worse with deep breaths

History

- Does the patient have a previous medical history that is relevant?
 - Known coronary artery disease
 - Previous re-vascularization?
 - Was there chest pain associated with that prior CAD event?
 - Is the current chest pain similar or different than previous chest pain?
 - Hypertension
 - Diabetes
 - CVA/TIA
 - Peripheral vascular disease
History

Risk Factors:
- Framingham risk factors (population based)
- Connective tissue diseases
- High potency stimulant use

Realize that risk factors only convey a lifetime statistical risk for disease processes:
- Presentation with chest pain has already selected for a higher risk group
- Don't ignore them totally

History

Pearls:
- Abrupt onset think TAD, PE, PTX
- Pleuritic pain think pericarditis, PE, pneumonia
- Don’t rely on response to therapy like NTG or GI cocktails
- Radiation to jaw, arms, or neck increases likelihood of ACS
- Consider sudden onset of symptoms, associated syncope or near syncope, or CHF like symptoms associated with the chest pain to be high risk

History

Avoiding Pitfalls:
- Don’t discount risk solely based on age, gender, or lack of traditional risk factors
- Remember that some groups of patients tend to have atypical presentations:
 - Women
 - Elderly
 - Diabetics
- Focus the history on life threats first and then broaden to include less concerning causes

Physical Exam

Realize that most patients with chest pain will have a normal physical examination

The physical exam should be used to make diagnosis more likely, not totally exclude a diagnosis:
- The absence of a single physical exam sign or combination of signs lacks the sensitivity and specificity to exclude disease
- Don’t fixate on reproducible chest wall pain!
 - 15% of patients having an active AMI report a tender chest wall
Physical Exam

- Focus on vital signs, general appearance, and positive findings:
 - Clinical signs of CHF (S3/S4, JVD, fluid overload)
 - Friction rub (pericarditis)
 - New onset murmur (aortic dissection, AMI)
 - Hamman's crunch (esophageal rupture)
 - Asymmetric pulses (aortic dissection)
 - Swollen extremities (PE, CHF)
 - Diaphoresis (non-specific, but concerning)

ECG

- You can classify the ECG based on ACC/AHA guidelines:
 - STEMI
 - NSTEMI/high risk unstable angina
 - Non-diagnostic
- The ECG is a slice in time only:
 - <50% of initial ECGs are diagnostic
 - Serial ECG's recommended, but timing is unclear
 - Progression with AMI
 - Hyper-acute T-waves
 - STE
 - T-wave inversion
 - Q waves

High Risk Features to the H and P

- Sudden onset of pain
- High risk associated symptoms:
 - SOB, diaphoresis, vomiting, syncope, etc.
- Exertional pain or persistent rest pain
- Abnormal vital signs
- Elderly patients and those with multiple co-morbid conditions

ECG

- If the ECG is abnormal, its important to compare it to an older ECG if available;
 - Can be critical for conditions like bundle branch blocks (old vs. new) in the setting of new onset chest pain as it helps determine intervention
- In addition to ACS:
 - ECG changes in PE
 - ECG in TAD
 - ECG in pericarditis
 - Arrhythmias
Lab Testing

- In patients sick enough to come to the ED or be admitted for chest pain, patients usually require:
 - Basic chemistries
 - Complete blood count

- Based on the history and physical examination, utilize a targeted approach to laboratory testing:
 - Coagulation profile (if on coumadin), cardiac markers, d-dimer, BNP, LFT’s, Lipase
 - Tox screen if concern for high potency stimulant use

Lab Testing

- Cardiac Markers
 - Myoglobin
 - First to peak, non-specific
 - Good NPV
 - CK-MB
 - Former gold standard; supplanted by troponin
 - Elevation in muscle damage, renal failure, sepsis, CVA
 - Troponin
 - Prolonged elevation in serum (7-14 days)
 - More sensitive and specific for ACS than CKMB; detects micro infarcts
 - Elevated troponin in UA = 9x increase in death due to MACE

Lab Testing

- BNP:
 - Helpful in the assessment of acute shortness of breath of unclear etiology or for assessment of CHF
 - Know your lab assay
 - Level <100 = unlikely CHF
 - Level >500 = likely CHF
 - Level between 100 and 500 = uncertain
 - Chronic elevation
 - Chronic renal insufficiency
 - Severe COPD with right sided failure
 - PE
 - Elderly women
Lab Testing

- D-dimer:
 - Helpful for the assessment of PE
 - ELISA test preferred; know your lab assay
 - Excellent sensitivity, but poor specificity
 - Need to combine d-dimer testing with some assessment of pre-test probability
 - Low or moderate pre-test probability and negative ELISA d-dimer, means you have excluded to the limits of testing
 - If positive d-dimer, need to follow up with further definitive test like VQ scan or CTPA to exclude disease

Imaging

- For most patients that are being assessed for chest pain, the PA and Lateral Chest X-Ray remains quite useful:
 - Good screening test for many conditions
 - Assessment of vasculature, lungs, bones, etc.
 - Can provide alternative diagnoses in some cases
- Be cautious about sensitivity and specificity and using the CXR to “rule out” diagnoses
- Better to utilize to “rule in” based on findings of the examination

Imaging

- Let the history and physical examination guide the decision about imaging
- Increasingly many options and difficult to apply the available literature to the patient sitting in front of you:
 - CT coronary angiogram with calcium scoring
 - Cardiac MRI with vasodilator stress
 - 80 lead ECG vest with regional pain mapping

Acute Coronary Syndrome
Acute Coronary Syndrome

- **ECG:**
 - You can classify the ECG based on ACC/AHA guidelines:
 - STEMI
 - NSTEMI/high risk unstable angina
 - Non-diagnostic
 - The ECG is a slice in time only:
 - Serial ECG’s recommended, especially if the patient’s symptoms change

LAD STEMI

Inferior STEMI

Acute Coronary Syndrome

- **ECG**
 - Normal ECG does not rule out ACS
 - A circumflex MI may be ECG-"silent"
 - Review AMI ECGs and anatomic lesions:
 - Anterior = LAD
 - Lateral = Circumflex, diagonal
 - Anterolateral = LAD or Left Main
 - Inferior = RCA (90%), Circumflex (10%)
 - Posterior = Usually RCA; associated with inferior, lateral AMI
Acute Coronary Syndrome

- **LEVEL 1: ST ELEVATION MI (STEMI)**
 - ST-segment elevation or presumed new LBBB is characterized by ST-segment elevation 1 mm in 2 or more contiguous precordial leads or 2 or more adjacent limb leads.

- **LEVEL 2: HIGH RISK UA/ NON-ST ELEVATION MI (NSTEMI)**
 - Ischemic ST-segment depression 0.5 mm or dynamic T-wave inversion with pain or discomfort. Transient ST-segment elevation 0.5 mm for 20 minutes is also included in this category.

- **LEVEL 3: INTERMEDIATE OR LOW RISK UA**
 - Normal or non-diagnostic changes in ST segment or T waves are inconclusive and require further risk stratification. This classification includes patients with normal ECGs and those with ST-segment deviation of 0.5 mm or T-wave inversion. Serial cardiac studies (and functional testing) are appropriate.

Clinician’s Guide to ACS

- Imperative to follow some sort of evidence based strategy for acute coronary syndrome.
- Lots of literature to guide practice, but hard to keep up with.
- Algorithmic approach that standardizes care and minimized practice deviation.

Cardiac Marker Summary:

- No marker is 100% sensitive all the time
- Troponin is the gold standard for AMI diagnosis
- Patients with positive markers have distinctly higher all cause morbidity and mortality in the literature
- Cardiac marker analysis should not delay coronary intervention in high risk patients (STEMI)

Non-Invasive Testing:

- Numerous studies show the prognostic value of stress testing to help risk stratify chest pain patients
 - Negative stress
 - 2% with MACE at 6 month
 - Positive or inconclusive stress
 - 17% with MACE
- Combining treadmill or pharmacologic stress with nuclear imaging or echocardiography greatly increases sensitivity.
 - Modality less important than timing of testing
 - Testing is more sensitive if patient actually having symptoms at the time of testing
Acute Coronary Syndrome

CT Coronary Angiogram:
- In setting of acute chest pain, pt should be low risk
- Non-inferior to stress nuclear imaging in low risk ED chest pain patients:
 - Stress nuclear imaging:
 - Sensitivity=71%, Specificity=90%, NPV=97%
 - Multidetector CT:
 - Sensitivity=86%, Specificity=92%, NPV=99%
- What's the physiological significance of lesions it finds?
- Radiation exposure and cost for low risk patients?

Acute Coronary Syndrome

Cardiac Catheterization:
- Considered the gold standard for ACS diagnosis
 - Anatomical and functional assessment
 - Can fix what you find (PCI)
 - Variability in lesion designation (visual assessment)
 - Some centers now using IV ultrasound to look at plaque stability
- Complications
 - ATN from IV dye load
 - Bleeding (groin hematoma, RP bleed)
 - Pseudoaneurysm

Acute Coronary Syndrome

Treatment:
- Protocol based diagnostic and treatment algorithm:
 - IV, Oxygen, Cardiac Monitor (or call 911)
 - CXR, cardiac markers, other labs
 - ASA (if they have a chest, given them ASA)
 - Chewed, 162-325 mg unless taken
 - Clopidogrel if true ASA allergy
 - Nitroglycerin
 - 0.4 mg SL q 5 min X 3
 - IV drip if needed for CP, HTN, CHF
 - Not if BP <90, HR <50, RV MI
- Beta Blocker
 - Should be used, but timing?
- Morphine
 - Should it be used?
- Others
 - ACE, statin important, but not acutely
Acute Coronary Syndrome

• Treatment
 ✓ Anticoagulation
 • Anticoagulate high risk ACS patients aggressively
 – Don't give high risk therapies to low risk groups
 – Know local practices, but remember that guidelines are increasingly national and expected
 • Positive troponin and ECG changes should get
 – ASA
 – Heparin/LMWH
 – Clopidogrel
 – Glycoprotein IIb/IIIa Inhibitor

Cocaine Associated Chest Pain

• Very common in the ED patient population
• Acute intoxication causes vasospasm, inflammatory mediator release, platelet aggregation
• ACS can result
• Treatment = routine ACS + lorazepam
 ✓ Exception = concern over use of beta blockers – this may worsen vasoconstriction and hypertension
• Conservative management in most cases

Acute Coronary Syndrome

• ACS Treatment Summary
 ✓ STEMI
 • ASA, NTG, B-blocker, UFH/LMWH, Clopidogrel, IIb/IIIa Inhibitor
 • Thrombolitics or PCI
 • Disposition = ICU
 ✓ NSTEMI/High Risk UA
 • ASA, NTG, B-blocker, UFH/LMWH, Clopidogrel, IIb/IIIa Inhibitor
 • Disposition = ICU
 ✓ Some Risk for UA
 • ASA, NTG, +/- on B-blocker
 • Disposition: Floor telemetry admission vs. short stay unit (depends on local resources)

Pulmonary Embolism
Pulmonary Embolism

- Diagnostic:
 - Physical exam is unreliable
 - Hohman's sign
 - Symptoms from HPI helpful like dyspnea, rapid heart rate, palpitations, pleurisy, hemoptysis, calf pain, etc.
 - Literature strongly supports some type of structured pre-test probability assessment
 - Well's Criteria
 - Charlotte Rule

- D-dimer:
 - Helpful for the assessment of PE
 - ELISA test preferred; know your lab assay
 - Excellent sensitivity, but poor specificity
 - Need to combine d-dimer testing with some assessment of pre-test probability
 - Low or moderate pre-test probability and negative ELISA d-dimer, means you have excluded to the limits of testing
 - If positive d-dimer, need to follow up with further definitive test like VQ scan or CTPA to exclude disease

Pulmonary Embolism

- Diagnostic:
 - DVT
 - Duplex Ultrasonography
 - Non-invasive and first line
 - More sensitive proximally
 - Serial exams necessary?
 - Availability
 - Venography
 - Gold standard (does anyone do this?)
 - CTV often combined with CTA

- PE
 - VQ Scan – have to do structured PTP assessment
 - PIOPED I
 - Low PTP and normal or very low prob = essentially rules out PE
 - High PTP and high prob = rule in PE
 - Anything else needs further testing
 - CT scan – high quality scanner and radiologist
 - PIOPED II
 - Study of choice; often gives alternative diagnosis
 - Literature unclear what to do with negative CTA when you have a high PTP
Pulmonary Embolism

- **Diagnostic:**
 - PE
 - **CT Scan**
 - Can increase sensitivity if combining CTA with CT venography
 - Helps define pelvic vein VTE, and can catch proximal femoral DVT
 - **Pulmonary Angiography**
 - Gold standard
 - Not available
 - Not trivial morbidity

- **Treatment:**
 - Anticoagulate with UFH or LMWH
 - LMWH superior for treatment of DVT
 - Unclear about PE; safe to use, but many still start with UFH
 - IVC filter to prevent further clot in those with contra-indications to anticoagulation
 - Thrombolytics or surgical embolectomy for massive PE and hemodynamic instability
 - Immediate consultation with ICU and cardiothoracic surgery if available

Aortic Dissection

- **Path:**
 - Sheer stress leads to intimal tear
 - Risk factors:
 - Hypertension (most common)
 - Trauma
 - Pregnancy
 - Coarctation
 - Bicuspid AV
 - High potency stimulants
 - Syphilis
Aortic Dissection

Stanford
- Type A
 - Any involvement of ascending aorta
- Type B
 - Limited to descending aorta

DeBakey
- Type I
 - Ascending and descending aorta
- Type II
 - Ascending only
- Type III
 - Descending only

Aortic Dissection

Clinical:
- Sudden onset of intense, ripping, tearing pain that often is in the chest radiating to the back or abdomen (suspect when pain above and below diaphragm)
- Absent pulses, discrepancy in UE/LE BP, ischemic limb
- New murmur of AR
- Cardiac tamponade
- Neuro symptoms like CVA, syncope, cauda equina syndrome
- Mesenteric ischemia

Diagnostic:
- Conventional angiography
 - Gold standard, but not readily available
 - Being supplanted by CTA
- Echocardiography
 - TTE helpful to rule out complications but not great sensitivity
 - TEE is the test of choice for unstable patient; often done perioperatively
 - Dubious availability even with cardiology back up

Diagnostic:
- ECG
 - Beware AMI mimic; beware anticoagulation
- CXR
 - More helpful in trauma; normal CXR not sensitive enough to rule out the diagnosis
 - Review classic findings in trauma
- CT scan with IV contrast
 - Study of choice in stable patient
Aortic Dissection

• Treatment:
 ✓ Close HD monitoring; arterial line
 ✓ Control BP (<120 SBP) and HR (<60)
 • Beta blockers are mainstay
 • Prevent sheer stress and further tear
 • Classic combination is esmolol and nitroprusside
 ✓ Classic dictum of Stanford A managed surgically and Stanford B managed medically
 • Blurred with new stent grafts and PCI?

Pneumothoraxic

• Sudden onset of sharp unilateral chest pain
• Traumatic usually obvious by history and part of standard trauma evaluation
• Spontaneous 1:13,000; 6x more common in young males
• Treatment depends on size:
 ✓ Observation
 ✓ Small lumen catheters
 ✓ Heimlich valves
 ✓ Traditional tube thoracostomy for all larger PTX
Esophageal Rupture (Boerhaave’s Syndrome)

• History is usually protracted vomiting, followed by severe chest pain and dysphagia:
 ✓ Constaraft pain; usually much worse with swallowing
 ✓ Dsypnea also common
 ✓ If late presentation, patients are critically ill
 ✓ Commonly described in alcoholics
 ✓ 92% iatrogenic or trauma, 8% spontaneous
• Hammond’s Crunch:
 ✓ Cellophane sound of mediastinum due to SQ emphysema
• Pneumomediastinum, Left pleural effusion
• Gastrografin swallow, CT, antibiotics, OR, ICU

Mitral Valve Prolapse

• Path
 ✓ Familial incidence
 ✓ Increased risk of dysrhythmia, endocarditis, sudden death
• Clinical
 ✓ Atypical chest pain and palpitations; advanced disease leads to MVR
• Treatment
 ✓ Beta blockers help for atypical chest pain and palpitations

Valvular Heart Disease

Aortic Stenosis

• Path
 ✓ <65 = rheumatic HD and congenital bicuspid
 ✓ >65 = calcifications
 ✓ Obstruction of LV outflow track lead to CHF and sudden death
• Clinical
 ✓ Classic triad of angina, dyspnea, and syncope
 ✓ Harsh murmur with radiation to carotids
• Treatment
 ✓ Extreme caution with preload/afterload reduction (get help with acutely decompensated patients)
 ✓ Valvuloplasty stabilizing, replacement definitive
Pericarditis

Clinical
- Sharp, stabbing, pleuritic CP
- Worse with supine, better when sitting up
- Friction rub (classic) but usual transient and difficult to auscultate
- Viral symptoms (low grade fever, malaise, URI symptoms)
- Usually tachycardic

Path
- Idiopathic (most common)
- Infectious (viral, TB was classic cause)
- Malignancy (lung and breast)
- Drug induced (procainamide, hydralazine)
- Post radiation
- Post MI (Dressler’s syndrome)
- Uremia
- Connective tissues (RA, lupus)

ECG
- Electrical alternans with big effusions
- First stage = ST elevation, PR depression
- Second stage = ST isoelectric
- Third stage = T wave inversion
- Fourth stage = resolution
- BEWARE OF MIMIC TO AMI!

CXR
- Limited value (alternative diagnosis)
- With acute effusion can have normal silhouette
Pericarditis

- **Diagnostic**
 - Echocardiogram
 - Everyone with pericarditis eventually needs this to rule out significant effusion
 - Tamponade is associated with right heart diastolic collapse
 - Remember that tamponade is a clinical diagnosis (muffled heart sounds, hypotension, JVD)
 - Lab tests
 - Somewhat dependent on suspicion of etiology
 - Cardiac markers? Can have small troponin leak
 - ESR and CRP are non-specific but usually elevated

- **Treatment**
 - NSAIDs unless contra-indicated
 - Not steroids in most cases
 - Recent studies show colchicine helpful
 - Pericardiocentesis or pericardial window for tamponade

- **Disposition**
 - Depends
 - Classically outpatient management

Myocarditis

- **Path**
 - Inflammation of heart muscle
 - Broad range of etiologies
 - Most common etiology in U.S. is viral (enteroviruses and echoviruses)
 - Most common worldwide is parasitic
 - Often mixed pericarditis and myocarditis picture
Myocarditis

Clinical
- Cardiac symptoms 7-14 days following viral illness (URI or GE)
- CP reflects pericardial irritation
- Fatigue, DOE
- Fever, tachycardia out of proportion to fever
- CHF and pulmonary edema in severe cases

Diagnostic
- ECG
 - Sinus tach, dysrhythmias, acute LVH
- CXR
 - Cardiomegaly
- Echo
 - Best single test; also evaluates for complications like pericardial effusion
 - Many centers now using cardiac MRI
- Lab tests
 - Often elevated cardiac markers
 - ESR and CRP usually elevated, but non-specific

Treatment
- Primarily supportive and monitoring for complications
- Antimicrobials if appropriate for infectious etiology
- Steroids, IVIG, and antiviral agents are all controversial
- Treatment of heart failure if present
- LVAD and cardiac transplantation in severe cases
Hypertension

- Significant hypertension in conjunction with hypertensive heart disease can manifest at chest pain
- This is alleviated with reduction of blood pressure
- It is important to exclude co-existing coronary artery disease in these patients as presentation may be very similar
- Patients with HTN and diastolic dysfunction are prone to chest pain when blood pressure is uncontrolled

GERD / Esophagitis

- **Things to remember:**
 - Do NOT assume chest pain is from GERD in a patient with a history of GI complaints
 - Urgent / life-threatening causes MUST be excluded first
 - Do NOT assume pain relief from Maalox, GI cocktail, etc, correlates to a GI cause of the pain
 - This is similar to reproducible chest pain – it may still be from coronary ischemia / angina

GERD / Esophagitis

- A not entirely uncommon manifestation of GERD is atypical chest pain
- Depending on the person, rather than classic "heartburn," "chest pain" may be the presenting symptom
- Something to consider once more worrisome chest pain causes are excluded and to clinically correlate with overall presentation
- Consideration for empiric therapy and EGD/GI evaluation

Esophageal Spasm

- This is a somewhat controversial entity in regards to correlation with chest pain
- Occasional correlation between evaluation with manometry and chest pain
- Occasional relief with calcium channel blockers
- This is a difficult diagnosis to evaluate and should be done in conjunction with gastroenterology in the appropriately selected patient population
Costochondritis

- Inflammation of the cartilage at the rib/sternum junction
- More common in women than men
- “Tietze's syndrome” if significant inflammation at the rib/sternum cartilaginous region with possible overlying erythema
- Diagnosis is clinical with tenderness to palpation seen
- It is important to know that angina can have reproducible chest wall pain and distinguishing these two conditions is imperative
- Treatment is supportive and with NSAIDs