Common Fractures

Diane L. Gorgas, MD
Associate Professor & Residency Director
Department of Emergency Medicine
The Ohio State University

Finger

MALLET FINGER (Baseball Finger)

- Avulsion of Extensor Digitorum Communis (EDC) Tendon from DIP joint
- PITFALL – get the films
 - Can be associated with Avulsion Fracture

Common Fractures

- Distal Upper Extremity
 - Fingers, Hand, Wrist
- Proximal Upper Extremity
 - Humerus, Shoulder, Clavicle
- Proximal Lower Extremity
 - Hip, Femur
- Distal Lower Extremity
 - Knees, Ankle, Feet

Finger

MALLET FINGER

- Mechanism of Injury:
 - Direct jam
 - Forced flexion
 - Dorsal dislocation of PIP
 - Laceration
 - Splint
 - Slight hyperextension for 6 weeks
 - Night splint for additional 6 weeks
 - Best results if treated early
Jersey Finger

- A pop or rip felt in the finger at the time of the injury
- Pain when moving the injured finger and the inability to bend the last joint
- Tenderness, swelling and warmth of the injured finger
- Bruising after 48 hours
- Occasionally a lump felt in the palm of the finger

Finger

JERSEY FINGER

- Avulsion injury of Flexor Digitorum Profundus (FDP) from volar base of distal phalanx
- Examination:
 - FDP test - blocked flexion of DIP
 - Treatment - early surgical repair
 - Permanent disability if missed

Neuro Hand Sensation

ulnar
radial
median
Boxer’s Fracture

DEFINITION
- Distal neck fx of 5th metacarpal
- Volar displacement acceptable to 45 degrees for office casting +/- closed reduction
- Rotation deformity
- More than minimal valgus or varus displacement
- Referral
- PITFALLS – missing a fight bite
Metacarpal Bones

BENNETT’S FRACTURE
- Intra-articular fx at base of 1st metacarpal
- Wide displacement due to pull of FPL
- Fragment held in place by strong ligament

Thumb Immobilization
- Thumb Spica Splinting

Wrist & Hand Injuries
- Scapholunate Ligament Injury
 - Most common and most crucial ligament injury of wrist.
 - Often leads to chronic pain and/or functional instability.

PITFALL – Only looking for fractures
Scapholunate Ligament Injury

Wrist Injuries

- Triquetral Fractures
 - Second most common fracture
 - PITFALL – not looking at Lateral film
“Wrist” Injuries

- Distal radius/ulna injury patterns
 - Colle’s fractures
 - Smith’s fractures (reverse Colle’s)
 - PITFALL- R,M,U disruption 8%

Supracondylar Fracture

- Mechanism: fall on flexed elbow
- PITFALL;
 - median nerve injury
 - Brachial artery injury

Elbow Fractures

- Radial Head Fracture
 - Sail Sign
 - PITFALL-
 - No boney abnormality, no fracture

Humerus Fractures
<table>
<thead>
<tr>
<th>Humerus Fractures</th>
<th>Clavicle Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>• PITFALL - Radial Nerve</td>
<td>• PITFALLS</td>
</tr>
<tr>
<td>• Transection</td>
<td>▪ CHECKING FOR VASCULAR INTEGRITY</td>
</tr>
<tr>
<td>• Neuropraxia</td>
<td>▪ ASSOCIATED INJURIES</td>
</tr>
<tr>
<td></td>
<td>▪ SKIN TENTING</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clavicle Fracture</th>
<th>Shoulder Dislocations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Shoulder Dislocations:
 - [Image of shoulder dislocation]
Shoulder Dislocations

- Anterior
 - Most common
 - Scaphoid deformity
 - Flexed and adducted
- Posterior
 - Seizures
 - PITFALL – not controlling seizures
- Inferior/Thoracic

Knee Injuries

- Seizures

Hip Fractures

- PITFALLS
 - Recognizing Occult fractures
 - Addressing high morbidity

Knee Injuries

- Patella Alta - PITFALL
- Patellar fractures – PITFALL – check extensor mechanism
Common Knee Fractures

Other Common Knee Fractures

Mechanism of Ankle Injury

- Inversion + Plantarflexion= 80% sprains
 - Most commonly involve the Anterior Talofibular Ligament.
- Inversion or Eversion alone
- Landing on unsteady object
- Change of Direction
 - Deceleration associated
- Manual Twisting
 - Wrestling injury

Ankle Fractures

- Bi and Tri malleolar fractures
- Mortis disruption

Ankle Fractures

- PITFALL
 - Examining the joint above and below
Proximal 5th Metatarsal Palpation

- Test of 5th Metatarsal Avulsion
 - Occurs most commonly with inversion
 - Peroneus Brevis pulls styloid off of 5th Metatarsal
 - PITFALL - Palpate at styloid for pain.
 - If positive for pain should X-ray.

Common Fractures in Orthopedics

Michael Quackenbush, DO
Assistant Professor Orthopaedic Trauma
Ohio State University Medical Center

5th Metatarsal Fractures

- Jones versus pseudo Jones
 - PITFALL – nonreferral of Jones

Adult Common Fractures Objectives

1. Recommend an approach to the evaluation of patients who present with a fracture
2. Identify operative and non-operative injuries commonly seen in orthopedics
3. Describe basic surgical treatment options for fractures
4. Understand goals of surgery and what your patients can expect during post operative period
Evaluation

• Patients age
• History
 – Time of injury
 – Mechanism of injury
 – “What hurts”
• Medical History
• Surgical History
• Social Hx (occupation)
• Medications (anticoagulation)
• Smoking/Alcohol history

Clinical Evaluation

• Need to closely exam the soft tissues around the fracture
• Look for openings in the skin – which may indicate an “open” fracture
• Abrasions? Amount of swelling? Presence of fracture blisters?

Physical Examination

• Look for deformity
• Palpate areas of tenderness
• Examine the joint above and below
• Detailed neurologic and vascular examination

Clinical Evaluation

• Soft tissue care
 – Primary goal is to halt continuing trauma to the tissues
 – Treatment of fractures first begins with “reducing” the fracture or dislocation
 – Immobilizing the fracture with a splint or external fixation
Clinical Evaluation

- Soft tissue care
 - Primary goal is to halt continuing trauma to the tissues
 - Treatment of fractures first begins with “reducing” the fracture or dislocation
 - Immobilizing the fracture with a splint or external fixation

Imaging Studies

- Some instances plain x-rays do not define the fracture well
 - Joint injuries with multiple fragment => CT scan
 - Occult fractures

Imaging Studies

- Radiographic assessment of fractures
- Begins with plain x-rays
 - 2 views at least
 - AP (anteroposterior) and lateral views
 - Joints above and below as some of the energy can be absorbed at a site away from the injury

Special Studies

- Elderly patients with hip pain => MRI can diagnose an occult hip fracture
- Occult Fractures
 - Bone Scan
 - Sensitivity 100% @ 72hrs
 - MRI
 - Sensitive in first 24 hrs
Now that we have a diagnosis, where do we go from here?
Fractures that require surgical intervention

• “Open” fractures
• Irreducible fractures or dislocations
• Displaced intra-articular fractures
Fracture Healing
- In general all adult fractures take 6-8 weeks to heal with or without surgical intervention
- Some fractures have longer healing times
 - Open fractures
 - Fractures in patients with diabetes
 - Intra-articular (joint) fractures
 - Fractures in bones with poor blood supply (scaphoid, talus, tibia)

Goals of Surgery
- Decrease pain
- Fix fracture/Replace with prosthesis
- Early return to function
- Early mobility – PT/Strengthening/ROM
- Return to work
- Return to life

Primary Goals
- Immobilize (let soft tissues relax)
- Pain control
- Ice and elevation
- Upper extremity – sling
- Lower extremity – crutches/walker
- Urgent orthopedic follow up

Examples of Common Fractures
Metacarpal Fractures

- ~3% of all fractures
- >50% work related
- Less frequent, MVC, recreation, household injuries
- Border digits most common

Metacarpal neck fractures

- Extra-articular fx
 - Some angulation, shortening accepted (more in little/ring, less with index/long fingers), but rotation need to be corrected
- “Boxer’s fracture”
 - Ulnar gutter splint 10-14 days

Evaluation

- Physical exam
 - Range of motion
 - Rotational deformity
 - Associated soft-tissue injury
 - Neurovascular examination

Distal Radius Fractures

- Common sites of injuries
- Most common fx of the UE
- 8-17% all bony injuries
Classification
Fracture Pattern

Classification
Fracture Pattern

Stable
Amenable to closed reduction and casting treatment

Unstable
Requires definitive fixation to achieve/maintain Radiographic parameters
Common Fractures

- Clavicle fractures
 - Vast majority heal with simple immobilization with sling for comfort
 - Begin early range of motion (1-2 weeks)
 - 6-8 weeks back to full activities
Proximal humerus fractures

- 4-5% of all fractures
- Most fxs (80-85%) min displaced
- Bimodal distribution
 - Young high energy injury
 - Older pt, low energy injury, osteoporotic bone

Common Fractures about the hip

- Displaced or Non-displaced
- Femoral neck fracture
- Intertrochanteric
- Hip fracture
Incidence

- 250,000 Hip Fractures/year
- Double by 2040 to 500,000

Etiology

- Osteoporosis
- Low energy fall
- 90% >65y/o
- Peak @ 80y/o
- F>M
- High energy fxs – More rare
Femoral neck fractures

Intertrochateric Hip Fractures

Why fix?

- Early mobilization
 - WBAT POD 1
 - Prevents prolonged bedrest
 - Decreased bed sores
 - Decreased pneumonia
 - Decreased pain
- Function
 - 40% Pre-Injury Ambulatory Status

References:
Osleoparos Int. 2000;11(12):1018-23
Fractures around the knee

- Supracondylar / intracondylar distal femur fractures
- Tibial plateau fractures
- “Joint” or “intra-articular” fractures
 - Recommend surgical ORIF for majority of fractures due to joint involvement

Fractures around the knee

- Longer period of NWB (typically 3 months) postoperatively due to joint fixation
- Early range of motion to prevent knee contractures

Foot and Ankle Fractures

- Foot and ankle trauma is common
- 25% of all traumatic injuries
- Significant time loss from work
 - Foot required for walking
Nonoperative Treatment

- Indicated for some isolated lateral malleolus fractures
 - WBAT in fracture boot
 - Early ROM exercises / PT
 - Takes ~6-8 weeks to heal

Metatarsal Fractures

- Treatment usually nonoperative
- Symptomatic:
 - Hard shoe
 - Walking cast
 - Elastic bandage

Ankle fractures

- Surgical intervention indicated for
 - Medial malleolus fractures
 - Bimalleolar and trimalleolar fractures
- Patients instructed to be non-weight bearing for 8 weeks after surgery (longer if associated ligamentous injury)
- 3-6 month recovery time

Lisfranc Injuries

- Up to 40% overlooked on initial radiographs
- High index of suspicion
- Xrays may show minimal displacement vs complete disruption
Take Home Points

- Begin with thorough clinical evaluation
- Obtain appropriate radiographs
- Splint/Immobilize
- Patients should be prepared for a “long” recovery time
- Surgery provides early ROM, predictive healing, better functional outcome