Radiation Poisoning

Outline

Radiation Safety
- Possible scenarios
- Radiation Basics
- Decontamination procedures

Medical Aspects of Radiation
- Biologic effects
- Radiation sickness
Radiation Safety

Rick Layman, MS, DABR
Instructor
Diagnostic Medical Physicist
Department of Radiology
The Ohio State University Medical Center

Possible Radiation Emergency Scenarios

- Medical
- Terrorist use of nuclear materials
- Catastrophic event
Medical Radiation Event

- 40 year old male underwent a coronary angiography, coronary angioplasty and secondary angiography due to complications, followed by a coronary artery by-pass graft.
- All procedures occurred on March 29, 1990

Appearance of skin injury post-procedure:
- (a) 6-8 wks
- (b) 16-21 wks
- (c) 18-21 wks

Medical Radiation Event

- Acquisition protocols were not set properly resulting in excessive exposures
- Cedar Sinai (L.A.): 200 patients overexposed during 18 month period
- Providence St. Joe (L.A.): 34 patients overexposed during 20 month period
- Glendale Adventist Medical Center (L.A.): 10 patients overexposed during 10 months
- 8x national average for exposure

Medical Radiation Event

- Radiation Oncology

Terrorist Use of Nuclear Material

- Radiological Dispersal Device (i.e. “dirty bomb”)
- Combine radioactive material with explosive device
- Blast effect plus radioactivity
Terrorist Use of Nuclear Material

Improvised Nuclear Device or Nuclear Weapon
- An actual nuclear detonation
- Allegation that 50 to 100 one kiloton suitcase nuclear weapons unaccounted for from former Soviet Union
- Various rogue or terrorist supporting states

Catastrophic Event

Reactor Accidents
- Three Mile Island - 1979
- Chernobyl – 1986
- Tokaimura, Japan – 1999 (uranium processing facility)
- Fukushima, Japan – 2011

War Veterans
- Operation UPSHOT-KNOTHOLE
- Exposures ranged from 0.4 – 31 mSv (equivalent to 5 – 390 chest x-rays)
Catastrophic Event

- Goiânia, Brazil
- 1985: Private radiotherapy clinic closed down
- 1987: Teletherapy head stolen
- Unit dismantled, Cs-137 source capsule ruptured causing major contamination
- 50.9 TBq (1375 Ci) caesium-137 teletherapy machine left in abandoned clinic

Goiânia, Brazil

- 112,000 people monitored
- 249 people contaminated
- 49 people 0.1 - 6.2 Gy
- 4 people died
 - 6 y old girl
 - 18 y old man
 - 22 y old man
 - 38 y old mother

Used with permission from Brian Dodd, BD Consulting, HPS Past President
Catastrophic Event

- Gilan, Iran
- 1996: Ir-192 source used for industrial radiography falls out of shielded container
- Manual worker picks up source and puts it in chest pocket

Used with permission from Brian Dodd, BD Consulting, HPS Past President

Gilan, Iran

- Resulting in severe radiation burns to the chest
Radiological Accident Statistics (1944-2000)

- ~ 400 reported accidents
- ~ 3000 exposed persons
- > 100 deaths, more than half involving patients
 - In addition, orphan sources can be mixed up with scrap causing contamination problems
 - Illicit trafficking involves orphan sources but very few orphan source incidents are due to illicit trafficking events

The Basics of Radiation

Ionizing radiation is electromagnetic energy or energetic particle emitted from a source. Ionizing radiation is able to strip electrons from atoms causing chemical changes in molecules.
Ionizing Radiation

- Ionizing radiation is emitted by
 - Radioactive material
 - Machine generated (x-rays, LINACS)
- Biological effects from ionizing radiation are dependent on the energy and type of radiation

Electromagnetic Radiation

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>IONIZING</th>
<th>NONIONIZING</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^20</td>
<td>Gamma rays</td>
<td>10^{15}</td>
</tr>
<tr>
<td>10^{18}</td>
<td>X-rays</td>
<td>10^{14}</td>
</tr>
<tr>
<td>10^{16}</td>
<td>Ultraviolet rays</td>
<td>10^{13}</td>
</tr>
<tr>
<td>10^{10}</td>
<td>Visible light</td>
<td>10^{12}</td>
</tr>
<tr>
<td>10^5</td>
<td>Infrared light</td>
<td>10^{11}</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>Radio waves</td>
<td>10^{10}</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>Micro-waves</td>
<td>10^9</td>
</tr>
<tr>
<td>10^{-10}</td>
<td>Wave length (m)</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>10^{-11}</td>
<td>Light waves</td>
<td>10^{-1}</td>
</tr>
</tbody>
</table>
Natural Background

Primarily radon and gamma rays from the atmosphere
- Ground
 - 222Rn
- Building Materials
- Air
- Food
 - 238U and 232Th from drinking water
- Universe
 - Gamma rays generated in supernova
- Elements within our own body
 - 14C

Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2, 2006

Manmade Sources

Used in medicine, research, and industry
- X-ray equipment
- Radioactive materials

Assumes everyone receives two diagnostic x-ray exams per year

Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2, 2006
Key Point:

Every individual receives low levels of radiation every day of their life.

Background Radiation Around the World
Key Point:

Not all radiation is equal

Particulate Ionizing Radiation

- Alpha particles: two protons and two neutrons
- Beta particles: release gamma
- Neutrons: causes other substances to become radioactive
Gamma or X-Ray (Photons)

- High energy rays
- Very penetrating
- Difficult to shield
- Can be produced from radioactive decay and a nuclear weapon explosion or reactor accident
- PPE will not protect against photon radiation

Penetrating Distances

<table>
<thead>
<tr>
<th>Particle</th>
<th>Paper</th>
<th>Plastic</th>
<th>Lead</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha (α)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta (β^-)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gamma and X-rays</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutron (ν)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radiosensitivity

Physical Factors

• Linear Energy Transfer (LET)
 - Measure of the rate at which energy is transferred from ionizing radiation to soft tissue.

• Relative Biologic Effect (RBE)
 - Ability to produce biologic damage

Fractionation

Biologic Factors

• Oxygen Effect
 - Tissue is more sensitive in the presence of oxygen

• Recovery

• Age

Radiation Sensitivity and Age

![Graph showing radiation sensitivity and age](image)
Law of Bergonie and Tribondeau

- Stem cells are radiosensitive. The more mature a cell, the more resistant to radiation it is.
- The younger the tissue and organs, the more radiosensitive they are.
- When the level or metabolic activity is high, radiosensitivity is also high.
- As the proliferation rate for cells and the growth rate for tissue increase, the radiosensitivity also increases.

Measures of Radiation Exposure

- Rad = Radiation Absorbed Dose: measures amount of energy actually absorbed by a material (i.e. tissue)
- Rem = Roentgen Equivalent Man: measures biologic damage of radiation; takes into account dose and type of radiation involved
- In most situations, 1 Rem = 1 Rad
- 1 Gray (Gy) = 100 Rads
- 1 cGy = 1 Rad
- 1 Sievert = 100 Rems
- 1 millisievert = 0.1 Rem
Radiation Doses and Dose Limits

<table>
<thead>
<tr>
<th>Activity</th>
<th>Dose Limit (mrem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flight from Los Angeles to London</td>
<td>5</td>
</tr>
<tr>
<td>Annual public dose limit</td>
<td>100</td>
</tr>
<tr>
<td>Annual natural background</td>
<td>300</td>
</tr>
<tr>
<td>Fetal dose limit</td>
<td>500</td>
</tr>
<tr>
<td>Barium enema</td>
<td>870</td>
</tr>
<tr>
<td>Annual radiation worker dose limit</td>
<td>5,000</td>
</tr>
<tr>
<td>Heart catheterization</td>
<td>45,000</td>
</tr>
<tr>
<td>Life saving actions guidance</td>
<td>50,000</td>
</tr>
<tr>
<td>(NCRP-116)</td>
<td></td>
</tr>
<tr>
<td>Mild acute radiation syndrome</td>
<td>100,000</td>
</tr>
<tr>
<td>(\text{LD}_{50/60}) for humans</td>
<td>350,000</td>
</tr>
<tr>
<td>(bone marrow dose)</td>
<td></td>
</tr>
<tr>
<td>Radiation therapy</td>
<td>6,000,000</td>
</tr>
<tr>
<td>(localized & fractionated)</td>
<td></td>
</tr>
</tbody>
</table>
Radioactive Material

• *Radioactive material* consists of atoms with unstable nuclei

• The atoms spontaneously change (decay) to more stable forms and emit radiation

• A person who is *contaminated* has radioactive material on their skin or inside their body (e.g., inhalation, ingestion, shrapnel, or wound contamination)

• A person exposed to radiation may, or may not, be contaminated.

• Not all radioactive materials are equal

Types of Radiation Hazards

• *External Exposure* - whole-body or partial-body (no radiation hazard to ED staff)

• *Contaminated* -
 - external radioactive material: on the skin
 - internal radioactive material: inhaled, swallowed, absorbed through skin or wounds
Radiation Exposure Types

<table>
<thead>
<tr>
<th>Irradiation</th>
<th>External Contamination</th>
<th>Internal Contamination</th>
</tr>
</thead>
</table>

Examples of Radioactive Materials

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Half-Life</th>
<th>Activity</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-137</td>
<td>30 yrs</td>
<td>1.5x10⁶ Ci</td>
<td>Industrial radiography</td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>5 yrs</td>
<td>15,000 Ci</td>
<td>Cancer Therapy</td>
</tr>
<tr>
<td>Plutonium-239</td>
<td>24,000 yrs</td>
<td>600 Ci</td>
<td>Nuclear Weapon</td>
</tr>
<tr>
<td>Iridium-192</td>
<td>74 days</td>
<td>100 Ci</td>
<td>Industrial Radiography</td>
</tr>
<tr>
<td>Hydrogen-3</td>
<td>12 yrs</td>
<td>12 Ci</td>
<td>Exit Signs</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>29 yrs</td>
<td>0.1 Ci</td>
<td>Eye Therapy Device</td>
</tr>
<tr>
<td>Iodine-131</td>
<td>8 days</td>
<td>0.015 Ci</td>
<td>Nuclear Medicine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Therapy</td>
</tr>
<tr>
<td>Technetium-99m</td>
<td>6 hrs</td>
<td>0.025 Ci</td>
<td>Diagnostic Imaging</td>
</tr>
<tr>
<td>Americium-241</td>
<td>432 yrs</td>
<td>0.000005 Ci</td>
<td>Industrial radiography</td>
</tr>
<tr>
<td>Radon-222</td>
<td>4 days</td>
<td>1 pCi/l</td>
<td>Environmental Level</td>
</tr>
</tbody>
</table>
Medical Aspects of Radiation

Richard Nelson, MD
Vice Chair
Department of Emergency Medicine
The Ohio State University

Acute Radiation Syndrome (ARS)

- Group of symptoms that develop after total body irradiation (> 100 rads)
- May occur from either internal or external radiation
- Four important factors are:
 - High Dose
 - High Dose Rate
 - Whole Body Exposure
 - Penetrating Radiation
ARS - Phases

1. **Prodromal Phase** - occurs in the first 48 to 72 hours post-exposure and is characterized by nausea, vomiting, malaise and anorexia. At doses below about 500 rads last 2 to 4 days. The earlier the symptoms, the worse the exposure.

2. **Latent Phase** - follows the prodromal phase and lasts for approximately 2 to 2 1/2 weeks. During this time, critical cell populations (leukocytes, platelets) are decreasing as a result of bone marrow insult. The time interval decreases as the dose increases.

3. **Illness Phase** - period when overt illness develops

4. **Recovery or Death Phase** - may take weeks or months
Prodromal Phase and Prognosis

- If time to emesis is < 4 hours: exposure at least 3.5 Gy
- If time to emesis is < 1 hour: exposure at least 6.5 Gy

Acute Radiation Sickness

- Skin/hair
- Gastrointestinal tract
- Hematopoietic system
- Central nervous system
ARS - Skin

<table>
<thead>
<tr>
<th>Response</th>
<th>Epilation</th>
<th>Erythema</th>
<th>Dry</th>
<th>Moist</th>
<th>Desquamation</th>
<th>Necrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
<td>600</td>
<td>1000</td>
<td>>1500</td>
<td>>5000</td>
<td>>5000</td>
</tr>
</tbody>
</table>

- **Day 9**
- **Day 11**
- **Day 16**
- **Day 24**
ARS - Gastrointestinal Syndrome

• Radiation > 600 rads
• Damages intestinal lining
• Nausea and vomiting within the first 2 - 4 hours
• May develop diarrhea
• Associated with sepsis and opportunistic infections
• At 10 days could develop bloody diarrhea resulting in death
ARS - Hematopoietic Syndrome

ARS Blood Counts

- 48 hour absolute lymphocyte count > 1200: good prognosis; 300 - 1200: significant radiation exposure; <300: probably lethal
- Absolute granulocyte counts: should be followed with higher-level exposures; nadir occurs at 8 to 30 days post-exposure
- Other parameters: platelet counts, reticulocyte counts, numbers of dicentric chromosomes in blood and bone marrow
ARS - Central Nervous System

- Seen with radiation dose > 1,000 rads
- Microvascular leaks → edema
- Elevated intracranial pressure
- Death within hours

Prehospital Care

- Information is critical: type of exposure, internal vs. external vs. whole vs. partial body, radioactive materials involved
- Decontamination if time permits
 - remove and bag clothing
 - soap and water cleansing of exposed skin
 - retain wash water
- Emphasis on treating life-threatening injuries
Evaluation & Treatment - Hospital Care

- Activate hospital plan
- Establish triage area (separate entrance)
- Plan to control contamination (don’t count on patients already being decontaminated)
 - Prepare area by cover/marking floor, control ventilation
 - Prepare staff by issuing protective clothing
 - Prepare for surveying; call radiation safety officer
 - Establish area for storage of waste
 - Plan for decontamination of non-traumatized patients

Patient Management: Triage

Triage based on:
- Injuries
- Signs and symptoms - nausea, vomiting, fatigue, diarrhea
- History - Where were you when the bomb exploded/ how close?
- Contamination survey with G-M meter
Patient Management: Priorities

Triage

• Medical treatment is the highest priority
• Radiation exposure and contamination are secondary considerations
• Degree of decontamination dictated by number of, and capacity to treat, other injured patients

Protecting Staff from Contamination

• Use universal precautions
• Survey hands and clothing with radiation meter
• Replace gloves or clothing that is contaminated
• Keep the work area free of contamination

Key Points

• Most contamination is easy to detect and most of it can be removed
• It is very unlikely that ED staff will receive large radiation doses from treating contaminated patients
Staff Protection Levels of PPE

- **Level A** – IDLH environments, fully encapsulated, requires SCBA
- **Level B** – Chemicals or substances with inhalation hazard, requires SCBA or SAR
- **Level C** – Known contaminants, requires air-purifying respirator

Decon Agents - 1

- **Dry Removal**
- **Soap / Shampoo**
- **Household Bleach 1:10** (Sodium Hypochlorite)
- **Waterless Cleansers**
Decon Agents - 2

- Povidone-Iodine
- Lava Soap
- Cornmeal / Tide 50:50
- Vinegar (\(^{32}\text{P}\)) or Club Soda
- Toothpaste

Decontamination

- Irrigate open wounds and cover with sterile dressing
- Soap and water showering (including hair)
- Effective for mixed radiation/chemical contamination
- Refer for any surgery
Patient Management: Decontamination

- Carefully remove and bag patient’s clothing and personal belongings (typically removes 75-95% of contamination). This may have been done at the scene.
- Survey patient and, if practical, collect samples (skin/wound swabs)

Patient Management: Decontamination

- Handle foreign objects with care until determined non-radioactive with survey meter
- Decontamination priorities:
 - Decontaminate wounds first, then intact skin
 - Start with highest levels of contamination
- Change outer gloves frequently to minimize spread of contamination
Patient Management: Decontamination (cont.)

- Cease decontamination of skin and wounds
 - When the area is less than twice background, or
 - When there is no significant reduction between decon efforts, and
 - Before intact skin becomes abraded.

Patient Management: Decontamination (cont.)

- Contaminated thermal burns
 - Gently rinse. Washing may increase severity of injury.
 - Additional contamination will be removed when dressings are changed.

- Do not delay surgery or other necessary medical procedures or exams...residual contamination can be controlled
Special Considerations

- High radiation dose and trauma interact synergistically to increase mortality.
- Close wounds on patients with doses > 100 rem.
- Wound, burn care and surgery should be done in the first 48 hours, or delayed for 2 to 3 months (> 100 rem).

<table>
<thead>
<tr>
<th>Emergency Surgery</th>
<th>Hematopoietic Recovery</th>
<th>Surgery Permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 - 48 Hours</td>
<td>~3 Months</td>
<td>After adequate hematopoietic recovery</td>
</tr>
</tbody>
</table>

Patient Management: Psychological Casualties

- Terrorist acts involving toxic agents (especially radiation) are perceived as very threatening.
- Mass casualty incidents caused by nuclear terrorism will create large numbers of worried people who may not be injured or contaminated.
- Provide psychological support to patients and set up a center in the hospital for staff.
Patient Management: Psychological Casualties

- Establish triage (monitoring and counseling) centers to prevent psychological casualties from overwhelming health care facilities
- Staff counseling centers with physicians with a radiological background, health physicists with instrumentation and psychological counselors

Patient Management: Treatment of Internal Contamination

- Radionuclide-specific, and time sensitive
- Most effective when administered early
- May need to act on preliminary information
- NCRP Report No. 65, Management of Persons Accidentally Contaminated with Radionuclides

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Treatment</th>
<th>Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesium-137</td>
<td>Prussian blue</td>
<td>Oral</td>
</tr>
<tr>
<td>Iodine-125/131</td>
<td>Potassium iodide</td>
<td>Oral</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>Aluminum phosphate</td>
<td>Oral</td>
</tr>
<tr>
<td>Americium-241/</td>
<td>Ca- and Zn-DTPA</td>
<td>IV infusion</td>
</tr>
<tr>
<td>Plutonium-239/</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cobalt-60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Potassium Iodide

- Blocks thyroid uptake of Iodine-131 (a beta emitter)
- Treat within 4 Hours (no utility >12 hours)
- Has no protective effect on anything else
- Soviets administered KI 72 hours after Chernobyl, and had thousands of cancers
- KI or Nal, 300 mg tablet
- SSKI (1 g / ml), 5 - 6 drops in water

NCRP Report No 65, p 83-86, 104

Radiostrontium Contamination Therapy

- Al Phosphate (100 ml) reduces absorption as much as 85%
- Ba Sulfate is also effective
- Na Alginate inhibits uptake by 80–90% (10g po)
Prussion Blue

- Blocks intestinal absorption of Cs-137

Penicillamine

- Radioactive heavy metal poisoning (lead)
DPTA chelation

- Plutonium
- Americium
- Curium

Other adjuncts

- Filgrastim and sargramostim to treat neutropenia
Localized Radiation Effects – Organ System Threshold Effects

- **Skin - No visible injuries** < 100 rem
 - Prompt - erythema, epilation >500 rem
 - Moist desquamation >1,800 rem
 - Ulceration/Necrosis >2,400 rem

- **Cataracts**
 - Acute exposure >200 rem
 - Chronic exposure >600 rem

- **Permanent Sterility**
 - Female >250 rem
 - Male >350 rem

Chronic Health Effects From Radiation

- **At low doses, radiation is a weak carcinogen**

- **Risk of fatal cancer due to radiation exposure is estimated as ~ 4% per 100 rem**

- **A dose of 5 rem increases the risk of fatal cancer by ~ 0.2%**

- **A dose of 25 rem increases the risk of fatal cancer by ~ 1%**
Fetal Irradiation

No significant risk of adverse health effects below 10 rem

<table>
<thead>
<tr>
<th>Weeks After Fertilization</th>
<th>Period of Development</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td><2</td>
<td>Pre-implantation</td>
<td>Little chance of malformation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Most probable effect, if any, is death of embryo</td>
</tr>
<tr>
<td>2-7</td>
<td>Organogenesis</td>
<td>Reduced lethal effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teratogenic effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Growth retardation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impaired mental ability</td>
</tr>
<tr>
<td>7-40</td>
<td>Fetal</td>
<td>Growth retardation with higher doses</td>
</tr>
<tr>
<td>All</td>
<td></td>
<td>Increased risk of childhood cancer</td>
</tr>
</tbody>
</table>

Key Points

- Early symptoms are an indication of the severity of the radiation dose
- Pre-planning to ensure adequate supplies of PPE and survey instruments
- Rescue and treatment protocols vary little for radiation contamination
- Treatment of medical/surgical emergencies takes priority
- Donning PPE and decontaminating patients minimizes exposure risk
- Treatment requires a unified effort