Blood disorders leading to cytopenias

William G. Blum, MD
Associate Professor Internal Medicine
Division of Hematology
Department of Internal Medicine
Ohio State University Medical Center

Case 1

• 31 year old female with fatigue, neuropathy
• WBC 1.8 (10% segs), Hgb 8.3g/dL, Plt 277
 – Bone marrow biopsy with dyserythropoiesis and dysmegakaryopoiesis, low blasts
 – Normal female karyotype
• Referred for transplantation consultation for myelodysplastic syndrome

Objectives

Overview of conditions/diseases that lead to blood cytopenias

Select disorders reviewed in more detail

Focus on evolving understanding of molecular biology
 – Hematologic disorders as a paradigm for “next generation” medical understanding of medical disease

Personalized health care has arrived!

“Blood disorders causing cytopenias…”
 it’s not quite so straightforward...

Primary hematologic conditions
 - AA
 - MDS
 - AML

Non-hematologic causes
 - PNH
 - MPN

Primary Immunodeficiency
 - LGL
 - PRCA

Primary hematologic conditions
 - AA
 - MDS
 - AML
Non-hematologic conditions in the differential diagnosis (partial list)

- Drug Effects
- Nutritional Anemias
- HIV
- Hypothyroidism
- Rheumatologic Disorders
- Copper deficiency
- Alcoholism

Case 1 continued

• Exam findings: dentures in place, severe sensory and motor neuropathy

• She mentioned that she had recently seen on ABC news a report of Zinc toxicity from Poligrip. She stopped using the product about a month prior, but had used it for 4-5 years.

• Her Zinc level was high at 2800ug/L in the urine with Zn/Cr ratio of 5456/ug/g creat (nl 100-900)

• Serum copper level, undetectable

• Copper replacement given, CBC normal within 3 weeks (neuropathy not improved...)

Case 2

• 53 year old female presented with fatigue, anemia, abdominal discomfort

• Hemoglobin 8.8g/dl, mild leucopenia, mild thrombocytopenia

• Bone marrow biopsy “consistent with refractory anemia”; cytogenetics normal

• Responded briefly to Procrit (recombinant erythropoietin) but began to feel worse, RBC transfusion dependent

• Referred to OSU for bone marrow transplantation
Case 2

Dx: Pernicious anemia
Plan: Replace B12
Outcome: Patient immediately began to feel better after B12 shots and returned to work soon after

Take home messages:
1. Non-hematologic disorders must be considered
2. Morphology alone may not be enough to make a diagnosis, increasingly we must rely on cytogenetic/ molecular tools

Common Presentations of AML

- vague history of chronic progressive lethargy
- 1/3 of patients acutely ill, usually with infection
- Petechiae with or without bleeding
- Splenomegaly and hyperuricemia (lymphoid?)
- Organ infiltration (of CNS, gums, skin, chloromas, retinal infiltration)

Primary hematologic conditions in the differential diagnosis of low blood counts

- Paroxysmal Nocturnal Hemoglobinuria (PNH)
- Aplastic Anemia (AA)
- Acute Myeloid Leukemia (AML)
- Myeloproliferative Neoplasm (MPN)
- Hairy Cell Leukemia (HCL)
- Pure Red Cell Anemia (PRCA)
- Hereditary sideroblastic anemias
- Large Granular Lymphocyte (LGL) Leukemia
- Myelodysplastic syndromes (MDS)

Lab Findings in AML

- Hemoglobin generally low, severe anemia uncommon
- WBC may be increased, decreased, or normal
 - 35% of all AML patients will have ANC < 1,000/uL; circulating blast cells may be absent 15% of the time
- Disseminated intravascular coagulation is common
 - especially in acute promyelocytic leukemia
- Thrombocytopenia is frequently observed--platelet counts <20,000/uL are common, often leads to bruising or bleeding (gums)
Outcomes in a cohort of younger AML patients (median age 52 years)

Byrd, et al, Blood 2002 (CALGB)

Outcomes worse if:

- Older age (>60)
- High WBC (over 20,000/uL)
- Prior hematologic disorder like myelodysplastic syndrome
- Leukemia caused by prior chemotherapy
- Poor initial response to chemotherapy
- Poor performance status
- ADVERSE RISK CYTOGENETICS

Outcomes in AML patients over 60 years of age...terrible

Farag, et al, Blood 2006 (CALGB)

Morphology as prognostic? Not really...
Morphology as prognostic? Not really...

Note the presence of Auer rods in the cytoplasm

From a risk assessment standpoint, appearances deceive

French-American British (FAB) Classification for AML

<table>
<thead>
<tr>
<th>FAB subtype</th>
<th>Name</th>
<th>% of adult AML patients</th>
<th>Prognosis compared to average for AML</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>Undifferentiated acute myeloblastic leukemia</td>
<td>5%</td>
<td>Worse</td>
</tr>
<tr>
<td>M1</td>
<td>Acute myeloblastic leukemia with minimal maturation</td>
<td>15%</td>
<td>Average</td>
</tr>
<tr>
<td>M2</td>
<td>Acute myeloblastic leukemia with maturation</td>
<td>25%</td>
<td>Better</td>
</tr>
<tr>
<td>M3</td>
<td>Acute promyelocytic leukemia</td>
<td>10%</td>
<td>Best</td>
</tr>
<tr>
<td>M4</td>
<td>Acute myelomonocytic leukemia</td>
<td>20%</td>
<td>Average</td>
</tr>
<tr>
<td>M4 eos</td>
<td>Acute myelomonocytic leukemia with eosinophilia</td>
<td>5%</td>
<td>Better</td>
</tr>
<tr>
<td>M5</td>
<td>Acute monocytic leukemia</td>
<td>10%</td>
<td>Average</td>
</tr>
<tr>
<td>M6</td>
<td>Acute erythroid leukemia</td>
<td>5%</td>
<td>Worse</td>
</tr>
<tr>
<td>M7</td>
<td>Acute megakaryoblastic leukemia</td>
<td>5%</td>
<td>Worse</td>
</tr>
</tbody>
</table>

Morphology does not tell you who will get cured and who will not
How we understand risk in AML is finally changing...

Molecular diagnostics—what mutations are relevant to outcome and (hopefully) treatment selection?

The epigenome and AML—role of normal genes that are abnormally silenced?

Cytogenetics
The human genome project comes to AML

How we understand risk in AML is finally changing...

The epigenome and AML—role of normal genes that are abnormally silenced?

Chromosome analysis provides the most important disease specific prognostic information

Outcomes in younger AML patients based on karyotype at diagnosis

Byrd, et al, Blood 2002 (CALGB)

Includes normal
Impact of most common mutations on survival in cytogenetically normal AML

Schlenk, NEJM 2009

Unfortunately, the problem of assigning risk in AML is getting more and more complex...

DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome

CDH24 Nonsense 0/187

SLC15A1 Nonsense 0/187

KND1 Missense 0/187

PTPRIT Missense 0/187

GRINL1B Missense 0/187

GPR123 Missense 0/187

EB12 Missense 0/187

PCLAC Missense 0/187

FLT3 Indel 51/185

NPM1 Indel 43/180

Using next generation technology and the apparatus previously harnessed for the Human Genome Project, the authors sequenced the entire genome in two ways from the same AML patient, examining both 1) leukemia cells 2) normal germline cells (skin)

By comparing the two results, they found 10 genes that were mutated in the leukemia cells and normal in the skin cells. 8 of these genes had never before been found to be associated with leukemia.
Sequencing the genome

- Is it practical?
 - First case took 8 months, second case only 8 weeks
 - Will every AML patient be fully sequenced in 10 years?
 - Now it takes only a week, costs $35K
- What is the function of the mutated genes?
 - Of the 8 new genes, 4 affect well described pathways related to cancer pathogenesis
- Role of epigenetics?
 - Can metabolic pathways important in leukemogenesis be disrupted even if the genes involved are NOT mutated?
 - Does screening for mutations actually tell the whole story?...
- Technology still advancing--authors went back with better DNA coverage and found
 - DNMT3a mutation, which is recurring, with negative prognosis

Is there an Achilles heel of AML? No...

There will not be a single unifying anomaly to explain “why” AML (cancer??) developed,

or to predict outcome,

or that can be targeted in all (or even most) AML patients.

Personalized medicine truly takes the stage.

Cytogenetic/Molecular Risk Stratification for 2011

<table>
<thead>
<tr>
<th>Risk group</th>
<th>Subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorable</td>
<td>t(8;21)(q22;q22); RUNX1-RUNX1T1</td>
</tr>
<tr>
<td></td>
<td>inv(16)(p13.1;q22) or t(16;16)(p13.1;q22); CBFB-MYH11</td>
</tr>
<tr>
<td></td>
<td>Mutated NPM1 without FLT3-ITD (normal karyotype)</td>
</tr>
<tr>
<td></td>
<td>Mutated CEBPA (normal karyotype)</td>
</tr>
<tr>
<td>Intermediate-I</td>
<td>All other combinations of FLT3 and NPM1</td>
</tr>
<tr>
<td>Intermediate-II</td>
<td>t(9;11)(p22;q23); MLLT3-MLL</td>
</tr>
<tr>
<td></td>
<td>Cytogenetic abnormalities not classified as favorable or adverse</td>
</tr>
<tr>
<td></td>
<td>inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1</td>
</tr>
<tr>
<td></td>
<td>t(6;9)(p23;q34); DEK-NUP214</td>
</tr>
<tr>
<td></td>
<td>t(v;11)(v;q23); MLL rearranged</td>
</tr>
<tr>
<td></td>
<td>-5 or del(5q); -7; abnl(17p); complex karyotype; monosomal karyotype</td>
</tr>
</tbody>
</table>

Adapted from Dohner et al, Blood 2010

Cytogenetic/Molecular Risk Stratification for 2011

<table>
<thead>
<tr>
<th>Risk group</th>
<th>Subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate-I</td>
<td>All other combinations of FLT3 and NPM1</td>
</tr>
<tr>
<td>Intermediate-II</td>
<td>t(9;11)(p22;q23); MLLT3-MLL</td>
</tr>
<tr>
<td></td>
<td>Cytogenetic abnormalities</td>
</tr>
<tr>
<td></td>
<td>inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1</td>
</tr>
<tr>
<td></td>
<td>t(6;9)(p23;q34); DEK-NUP214</td>
</tr>
<tr>
<td></td>
<td>t(v;11)(v;q23); MLL rearranged -5 or del(5q); -7; abnl(17p); complex karyotype; monosomal karyotype</td>
</tr>
</tbody>
</table>

Adapted from Dohner et al, Blood 2010
If you were the patient, what would sound better?

“History tells us that you are likely to do poorly with conventional treatment, but its all we have so let’s give it a try anyway.”

“History tells us that you are likely to do poorly with conventional treatment, so we have altered your treatment plan to mitigate this risk and improve your chances.”

How do we integrate the prognostic/predictive information in AML?

- Single-gene marker
- Gene profiles
- miRNA profiles
- Individualized treatment
- Cytogenetics
- Age, clinical factors
- Genome sequencing?

How can we use prognostic information more effectively in 2010?

- Use cytogenetics and molecular risk to guide current therapy
 - Chemotherapy selection
 - Role of allogeneic stem cell transplantation for patients in first complete remission (CR1)
 - Targeted therapies?
Case 3 and 4

- #3—79 yo female, WBC 1.0, Hgb 9.7, Plt 97
- #4—79 yo female, WBC 1.2, Hgb 10.7, Plt 141
- Predominant symptom in both is fatigue
- Morphologically, both patients appear to have acute promyelocytic leukemia (APL)

Case 3 and 4

- Case #3—t(15;17) negative and molecular studies negative, 5 year survival rate for AML > 60 years close to 0
 - Patient elected hospice care
- Case #4—t(15;17) +, 40-50% cured
 - Patient elected retinoic acid/arsenic based induction

Acute Promyelocytic Leukemia

Treating the “older” AML patient

- Who should be treated “intensively”? Subsets who are likely to do better than most...
 - Core binding factor AML, APL
 - NPM1 mutations +
- Consider alternative (experimental) Rx if
 - Comorbid disease
 - Age >70
 - Borderline functional status
 - Cytogenetic adverse risk
Case 5

- At the urging of her husband who is "worried about her cholesterol" (and progressive fatigue...), a 63-year-old mutual fund manager presents to her internist for her first evaluation in 5 years.
- Review of systems: Fatigue, worsening for about a year, otherwise negative
- Past medical history: In good health otherwise, no significant past medical history

Laboratory findings:
- Hgb: 9.2g/dL with an MCV of 101
- WBC: 2.3 with an ANC of 690/uL
- Platelet: 64,000/uL
- Retic count: 0.3%
- Peripheral blasts: None
- B12: Normal
- RBC folate: Normal
- Erythropoietin: 254

Marrow Biopsy: Trilineage dysplasia, 11% blasts
Cytogenetics: 4 abnormalities including monosomy 7

Myelodysplastic syndromes (MDS)

MDS: Characteristics

- Clonal bone marrow disorders
- Typically with hypercellular marrow, low counts, and cell function abnormalities
 - "ineffective erythropoiesis"
- Natural history is highly variable
 - Typical presentation is older patient with fatigue and anemia, often patients are treated inappropriately for iron deficiency initially
 - Can progress to AML, often fatal even if it does not due to high risk of infection over time
- No cure except for allogeneic transplantation, but most patients are elderly and not candidates
International Prognostic Scoring System (IPSS) for MDS

<table>
<thead>
<tr>
<th>Cytopenia</th>
<th>Neutrophils</th>
<th><1,800/μl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hemoglobin</td>
<td><10 g/dl</td>
</tr>
<tr>
<td></td>
<td>Platelets</td>
<td><100,000/μl</td>
</tr>
</tbody>
</table>

Cytogenetics

<table>
<thead>
<tr>
<th>Good:</th>
<th>Normal or -5q, -Y, -20q as sole abnormalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate:</td>
<td>Other abnormalities</td>
</tr>
<tr>
<td>Poor:</td>
<td>-7, complex (>3 abnormalities)</td>
</tr>
</tbody>
</table>

MDS: Median Survival by IPSS and Age

<table>
<thead>
<tr>
<th>Age, yr (n)</th>
<th>Low</th>
<th>Int-1</th>
<th>Int-2</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>All ages (n = 816)</td>
<td>5.7</td>
<td>3.5</td>
<td>1.2</td>
<td>0.4</td>
</tr>
<tr>
<td><60 (n = 205)</td>
<td>11.8</td>
<td>5.2</td>
<td>1.8</td>
<td>0.3</td>
</tr>
<tr>
<td>>60 (n = 611)</td>
<td>4.8</td>
<td>2.7</td>
<td>1.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

• From diagnosis in untreated patients

IPSS Predicts Overall Survival and AML Evolution In De Novo MDS

Case 5
63yo with “high risk” MDS

• Early initiation of hypomethylating agent
 – Azacitidine or decitabine
• Screen for HLA matched donor at diagnosis (sibs, unrelated volunteer adults, cord blood?)
 – Nonmyeloablative conditioning given age
 – Eligibility depends on preserved organ function, response to hypomethylating agent therapy
Case 6

- 56 yo female with fatigue. Recently diagnosed with early stage breast cancer.
 - WBC 5.4, Hgb 9.4, Plt 555

- Marrow evaluation shows atypical megakaryotypes, dyserythropoiesis
 - Cytogenetics: partial deletion of 5q

MDS with del (5q)

- Typically a more indolent disease course than most MDS patients
- Anemia, high platelet count; typical marrow findings include normal %blasts and hypolobulated megakaryocytes
- Unique clinical activity of the drug lenalidomide in del (5q) MDS

MDS with partial deletion of 5q:

A unique clinical entity serves as a window to the future for “personallized” therapy?

Lenalidomide responses in lower risk* MDS patients with or without del (5q)

<table>
<thead>
<tr>
<th></th>
<th>RBC TI</th>
<th>Time to response</th>
<th>Duration</th>
<th>Cytogenetic CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>del (5q)</td>
<td>67%</td>
<td>4.6 weeks</td>
<td>115 weeks</td>
<td>45%</td>
</tr>
<tr>
<td>Non-del (5q)</td>
<td>26%</td>
<td>4.8 weeks</td>
<td>41 weeks</td>
<td><10%</td>
</tr>
</tbody>
</table>

*lower risk refers to IPSS risk group of low or int-1

List et al, 2006; Raza et al, 2008
Aplastic anemia (AA)

- Pancytopenia and aplastic marrow
 - Commonly present with anemia and hemorrhage
- Typically an acquired autoimmune disorder
- Bimodal distribution with peaks in children and young adults, again in age > 60

Case 7

- 50 year old male presents for his usual Red Cross donation appointment and is told to see his doctor instead, due to anemia
 - WBC 1.1, Hgb 12.5, Plt 80
 - Palpable spleen

Aplastic anemia (AA)

Treatment selection
- For younger patients or for severe/very severe AA (defined by lower ANC), first line therapy is BMT if HLA identical sib available
 - 10 year survival 75-85%
- Immunosuppressive therapy
 - ATG, Cyclosporine
 - RR 60-80%, 5 year event free survival 50%

Hairy cell leukemia

- “Reticuloendotheliosis”, Bouroncle at OSU in 1958
- Hypocellular marrow, common misdiagnosis of AA
- Remission rates with cladribine or pentostatin of 85-91%
- Case 7 patient treated with pentostatin and still has normal CBC 7 years later
BRAF mutation in HCL
Tiacci, NEJM this week

• Massive parallel whole exon sequencing of a patient with hairy cell leukemia (HCL)
 – 5 mutations identified, one was a BRAF mutation known to be oncogenic in other tumors
 – Next, authors looked for the mutation in 47 additional HCL patients
 • All 47 had the same mutation
 • And none of the 195 “control” patients with B-cell NHL had it

Conclusions

• The heterogeneity of diagnoses in “blood disorders that cause cytopenias” suggests that early hematologic expert consultation is in order

• These disorders provide a glimpse of the future of medicine and “personalized therapy”

Does this matter for my primary care practice?