Pulmonary Arterial Hypertension: Diagnosis of Treatment

Namita Sood, MD, FCCP
Director, Pulmonary Hypertension Program
Associate Professor - Clinical
Department of Internal Medicine
The Ohio State University Wexner Medical Center

PAH

• Classification
• Diagnosis
• Current treatment
Pulmonary Circulation

- Originates from the RV
- Low Pressure, low resistance circuit
- Thin-walled vessels
- High compliance
- Receives entire CO from RV
- Accommodates wide range of CO without increase in PVR
Pulmonary Hypertension

- Mean PAP > 25 mmHg
- Not just one disease, but a large group of diverse diseases

Classification

1. Pulmonary arterial hypertension (PAH)
 - 1. Pulmonary arterial hypertension (PAH)
 - 1.1. Idiopathic (IPAH)
 - 1.2. Heritable
 - 1.2.1 BMPR2
 - 1.2.2 ALK1 Endoglin (with or without HHT)
 - 1.2.3 Unknown
 - 1.3. Drugs and Toxins
 - 1.4 Associated with (APAH):
 - 1.4.1. Collagen vascular disease
 - 1.4.2. HIV
 - 1.4.3. Portal hypertension
 - 1.4.4. Congenital Heart Disease
 - 1.4.5. Schistosomiasis
 - 1’1 Pulmonary veno-occlusive disease (PVOD)/Pulmonary capillary hemangiomatosis (PCH)
 - 1’2 Persistent pulmonary hypertension of the newborn
Classification

2. Pulmonary hypertension with left heart disease
- 2.1. Left Ventricular Systolic Dysfunction
- 2.2. Left Ventricular Diastolic Dysfunction
- 2.3. Valvular Disease
- 2.4. Congenital /Aquired Left Heart inflow tract obstruction and congenital cardiomyopathies

3. Pulmonary hypertension associated with lung diseases and/or hypoxemia
- 3.1. Chronic obstructive pulmonary Ds
- 3.2. Interstitial lung disease
- 3.3. Sleep-disordered breathing
- 3.4. Alveolar hypoventilation disorders
- 3.5. Chronic exposure to high altitude
- 3.6. Developmental abnormalities

4. Pulmonary hypertension due to chronic thromboembolic
Classification

- 5. Pulmonary Hypertension with unclear multifactorial mechanism
 - 5.1 Hematologic disorders, myeloproliferative disorders, splenectomy
 - 5.2 Sarcoidosis, histiocytosis X, lymphangioleiomyomatosis
 - 5.3 Metabolic disorders, glycogen storage disease, Gaucher disease, thyroid
 - 5.4 Compression of pulmonary vessels tumor obstruction, fibrosing mediastinitis, Chronic renal failure

Pulmonary Arterial Hypertension

- Mean pulmonary artery pressure
 - > 25 mm Hg
 - Pulmonary artery wedge pressure <15
Incidence of PAH

- 187 patients followed over 7 years
- Mean age at diagnosis: 36 years
- Almost 2:1 female-to-male ratio
- Incidence: ~2 cases per 100,000
- Mean survival 2.8 yrs
- Mean duration of symptoms before diagnosis: 2 years

- 647 patients in 1 yr
- Prevalence increasing: 15 cases per million
 - IPAH = 5.9 per million
- Mean delay between enrollment and diagnosis: 6 ± 86 months

A Disease of Decline and Deterioration: IPAH Survival if Untreated

- Poor prognosis in an era lacking therapy
- Therapeutic options and research efforts now offer more hope

REVEAL: Observed 1-year Survival From Time of Enrollment According to Predicted Risk Strata

% Patients NYHA Functional Class III-IV at Diagnosis
Is There a Reason to Suspect PAH?

Clinical Presentation

<table>
<thead>
<tr>
<th>Common Initial Symptoms (N=187)</th>
<th>Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dyspnea</td>
<td>60</td>
</tr>
<tr>
<td>Fatigue</td>
<td>19</td>
</tr>
<tr>
<td>Syncope or near syncope</td>
<td>13</td>
</tr>
<tr>
<td>Chest pain</td>
<td>7</td>
</tr>
<tr>
<td>Palpitations</td>
<td>5</td>
</tr>
<tr>
<td>Leg edema</td>
<td>3</td>
</tr>
</tbody>
</table>

Physical Exam

Presence of PH
- Loud P2
- RV lift
- Systolic murmur (TR)
- Diastolic murmur (PR)
- RV S4

Presence of RV Failure
- JVD with V wave
- RV S3
- Hepatomegaly
- Edema
- Ascites
Chest X-Ray

Prominent Proximal Pulmonary Arteries

Chest X-Ray

Peripheral Hypovascularity (Pruning)
Chest X-Ray

RV Enlargement into Retrosternal Clear Space

Is There a Reason to Suspect PAH?

ECG

Diagnostic Evaluation

- Pulmonary function tests
 - Mild restrictive defects
 - Decreased DLCO
- Arterial Blood gas
 - Hypoxemia
 - Increased A-a gradient

Chest X-Ray

- Peripheral Hypovascularity (Pruning)
- RV Enlargement into Retrosternal Clear Space
- Prominent Proximal Pulmonary Arteries
Cardiovascular Evaluation

Chamber size
LV and RV systolic function
LV diastolic function
Valvular function
TR
Bubble study

4.1 m/sec = 70 mmHg
+ RA Pressure = PA 80 mmHg
Diagnostic Approach

- RVE, RAE, ↑RVSP
- Left heart disease
- VHD
- CHD

Echocardiogram

- Emphysema
- ILD
- Thoracic abnl

- Exam
- CXR
- ECG

PFTs

- Sleep disorder
- Sleep study

- Ventilation-perfusion scan,
 Contrast CT,
 Angiography

- Autoantibody tests

- HIV test

- HIV

- BNP
- RH cath
- Vasodilator test

- LFTs and clinical evidence of cirrhosis and portal htn

- Portopulmonary hypertension

- Functional test
- Scleroderma
- SLE
- RA
- Vasculitis
- Chronic thromboembolism

Exercise testing

- Six – minute walk
- Cardiopulmonary exercise test
 - Assessment of functional status
 - Response to therapy

Functional Assessment

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>No limitation of physical activity. Ordinary physical activity does not cause undue dyspnea or fatigue, chest pain or near syncope.</td>
</tr>
<tr>
<td>Class II</td>
<td>Slight limitation of physical activity. Ordinary physical activity causes undue dyspnea or fatigue, chest pain or near syncope.</td>
</tr>
<tr>
<td>Class III</td>
<td>Marked limitation of physical activity. Less than ordinary physical activity causes undue dyspnea or fatigue, chest pain or near syncope.</td>
</tr>
<tr>
<td>Class IV</td>
<td>Inability to perform any physical activity without symptoms. Signs of right heart failure. Dyspnea and/or fatigue may be present at rest, and discomfort is increased by any physical activity.</td>
</tr>
</tbody>
</table>

* New York Heart Assoc./World Health Org. modification

http://www.who.int/ncd/cvd/pph.html

NYHA Staging / Survival in PPH

![NYHA Staging / Survival in PPH Diagram](image)
Right Heart Catheterization

- Invasive measurement of:
 - Right atrial Pressure
 - Right ventricular Pressures
 - PA Pressure
 - Pulmonary capillary wedge pressure
 - Mixed venous oxygen saturation
 - Cardiac output
 - Vasodilator challenge

Image from A.D.A.M.

Pivotal Tests

<table>
<thead>
<tr>
<th>History</th>
<th>Exam</th>
<th>CXR</th>
<th>ECG</th>
<th>Echocardiogram</th>
<th>VQ Scan</th>
<th>PFT's</th>
<th>Overnight Oximetry</th>
<th>HIV</th>
<th>ANA</th>
<th>LFT's</th>
<th>Functional Test (6MWT, CPET)</th>
<th>RH Cath</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEE</td>
<td>Exercise Echo</td>
<td>Pulmonary Angiography</td>
<td>Chest CT Angiogram</td>
<td>Coagulopathy Profile</td>
<td>ABG's</td>
<td>Polysomnography</td>
<td>Other CTD Serologies</td>
<td>Vasodilator Test</td>
<td>Exercise RH Cath</td>
<td>Volume Loading</td>
<td>Left Heart Cath</td>
<td></td>
</tr>
</tbody>
</table>

Contingent Tests

- Index of Suspicion of PH
- RVE, RAE, RVSP, RV Function
- Left Heart Disease
- VHD, CHD
- Chronic PE
- Ventilatory Function
- Gas Exchange
- Sleep Disorder
- HIV Infection
- Scleroderma, SLE, RA
- Portopulmonary Htn
- Establish Baseline
- Prognosis
- Confirmation of PH
- Hemodynamic Profile
- Vasodilator Response

ACCF/AHA Diagnostic Algorithm

Mechanisms of Disease Pathology

<table>
<thead>
<tr>
<th>RISK FACTORS AND ASSOCIATED CONDITIONS</th>
<th>VASCULAR INJURY</th>
<th>DISEASE PROGRESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen vascular disease</td>
<td>Endothelial Dysfunction</td>
<td>Loss of response to short-acting vasodilator trial</td>
</tr>
<tr>
<td>Congenital heart disease</td>
<td>Nitric oxide synthase</td>
<td></td>
</tr>
<tr>
<td>Portal hypertension</td>
<td>Prostacyclin production</td>
<td></td>
</tr>
<tr>
<td>HIV infection</td>
<td>Thromboxane production</td>
<td></td>
</tr>
<tr>
<td>Drugs and toxins</td>
<td>Endothelin 1 production</td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Vascular Smooth Muscle Dysfunction</td>
<td></td>
</tr>
<tr>
<td>Abnormal BMPR2 gene</td>
<td>Impaired voltage-gated potassium channel (K_V1.5)</td>
<td></td>
</tr>
<tr>
<td>Other genetic factors</td>
<td></td>
<td>susceptibility</td>
</tr>
</tbody>
</table>

NORMAL

REVERSIBLE DISEASE

IRREVERSIBLE DISEASE

Progression of PAH

- Pre-symptomatic/Compensated
- Symptomatic/Decompensating
- Declining/Decompensated

- CO: Symptom Threshold
- PAP
- PVR: Right Heart Dysfunction

Treatment

General measures

- Supplemental oxygen
- Diuretics
- Digoxin
- Anticoagulation

Anticoagulation

Rationale:

- Fresh intrapulmonary clots
- High risk for thromboembolic event
- Improved survival

Treatment

- Warfarin- goal INR 1.6-2.5
Digoxin

- Inotropic effect: variable
- Used in varying number of patients in major center trials of PAH
- Short-term administration associated with an increase in cardiac output and reduced circulating catecholamines
- No long-term data available

Diuretics

- Majority of patients require them
- Variable response
- Follow renal and electrolyte parameters
- Individual patient assessment
Oxygen

- Hypoxemia is detrimental: results in vaso-constriction
- Altitude and sleep may result in hypoxemia
- In congenital heart disease, probably no benefit

Other Management Issues

- Encourage exercise and activity within the limits of disease and ability to maintain O_2 levels
- Immunizations
- Contraception
Calcium Channel Blockers

Rationale:
• Rich et al NEJM 1992;327:76-81
• 64 patients with PPH
 • 17 Significant vasoreactivity
 • 13 treated with Nifedipine 172mg + 41 mg/day
 • 4 treated with Diltiazem 720 + 208 mg/day
 • 94% alive at 5 years

Treatment
• Diltiazem 360-900 mg/day
• Nifedipine 90-180 mg/day
• Amilodipine 20-40 mg/day

What Is the Optimal Treatment Strategy?

Anticoagulate ± Diuretics ± Oxygen ± Digoxin

Acute Vasoreactivity Testing

Positive

Oral CCB

Sustained Response

No

Yes

Continue CCB

Negative

What Is the Optimal Treatment Strategy?

"Vasodilator Response"
- Fall in mPAP ≥ 10 mm Hg
- + PAPm (absolute) < 40 mm Hg
- + Normal CO

<table>
<thead>
<tr>
<th>II</th>
<th>WHO-class IV</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longer (>400 m)</td>
<td>6MWD</td>
<td>Shorter (<300 m)</td>
</tr>
<tr>
<td>Peak VO₂ <15.4 mL/kg/min</td>
<td>CPET</td>
<td>Peak VO₂ <15.4 mL/kg/min</td>
</tr>
<tr>
<td>Minimal RV dysfunction</td>
<td>Echocardiography</td>
<td>Pericardial effusion, significant RV enlargement/dysfunction; RA enlargement</td>
</tr>
<tr>
<td>RAP <10 mm Hg; CI >2.5 L/min/m²</td>
<td>Hemodynamics</td>
<td>RAP >20 mm Hg; CI <2.0 L/min/m²</td>
</tr>
<tr>
<td>Minimally elevated</td>
<td>BNP</td>
<td>Significantly elevated</td>
</tr>
</tbody>
</table>

Survival in IPAH
Long-term CCB Responders

- Long-term CCB responders (~50% of acute responders or 56% of IPAH patients)
- Cumulative survival:
 - Long-term CCB responders
 - Long-term CCB failure
 - P=0.0007

<table>
<thead>
<tr>
<th>Subjects at risk, n</th>
<th>Long-term CCB responders</th>
<th>Long-term CCB failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>38 33 30 22 13 8 3 3 2 1</td>
<td>19 12 7 4 0</td>
<td></td>
</tr>
</tbody>
</table>

Approved Therapeutic Targets

Endothelin Pathway
- Pre-proendothelin
- Proendothelin
- Endothelial cells
- Endothelin-1

Nitric Oxide Pathway
- L-arginine
- L-citrulline
- Endothelial cells
- Arachidonic acid

Prostacyclin Pathway
- Prostacyclin (prostaglandin I₂)
- Endothelial cells

Pathway Diagram:
- Endothelin receptor A
- Endothelin receptor B
- Exogenous nitric oxide
- Phosphodiesterase type 5 inhibitor
- Prostacyclin derivatives

End points used in trials

- 6 minute walk distance
- VO2
- QOL
- Hemodynamics
- Time to clinical worsening

Approved Therapeutic Targets

Endothelin Pathway
- Pre-proendothelin → Proendothelin
- Endothelin-1
- Endothelin receptor A
- Endothelin receptor B
- Vasoconstriction and proliferation
- Smooth muscle cells

Nitric Oxide Pathway
- L-arginine → L-citrulline
- Nitric oxide
- Exogenous nitric oxide
- Phosphodiesterase type 5 inhibitor

Prostacyclin Pathway
- Prostacyclin (prostaglandin I₂)
- Prostacyclin derivatives

Endothelin-1
- Arachidonic acid
- cGMP
- cAMP

Endothelin-1 receptor
- Endothelial cells
- Prostacyclin derivatives

Endothelin receptor Blocker

- **Ambrisentan**: selective (ETₐ) antagonist

 - Approved doses: 5 mg and 10 mg qd

- **Bosentan**: dual (ETₐ and ETₐ) antagonist

 - Approved doses: 62.5 mg bid starting dose for 4 weeks increased to 125 mg bid maintenance dose

- **Macitentan**: dual (ETₐ and ETₐ) antagonist

Endothelin receptor blockers vs Placebo in PH

- **Bosentan and Ambrisentan**
 - Increased exercise capacity
 - Delayed the time to clinical worsening
 - Improved dyspnea score
 - WHO Functional Class

Macitentan for PAH: Time To Clinical Worsening or Death

Abstract

![Graph showing time to clinical worsening or death for Macitentan 10 mg, Macitentan 3 mg, and Placebo.](graph)

- Macitentan 10 mg: (n=242)
- Macitentan 3 mg: (n=250)
- Placebo (n=250)

Mean change from baseline in 6 MWD (m) vs Time from treatment start (months)

Macitentan 10 mg: Hazard ratio=0.55; log-rank p<0.0001
Macitentan 3 mg: Hazard ratio=0.70; log-rank p=0.0108

N=742. Double-blind, placebo-controlled Phase III study. Primary endpoint composite endpoint of death, atrial septostomy, lung transplantation, initiation of intravenous/subcutaneous prostanooids or 'other worsening' of PAH.

Endothelin Receptor Antagonists: Side Effects

- Nasal congestion
- Abnormal hepatic function
 - reversible transaminase elevations >3X ULN
 - may require dose adjustments or discontinuations
 - monthly LFTs required
- Edema
 - lower extremity edema may require diuretic adjustment
- Use requires dual contraceptive methods (hormonal plus barrier)

Approved Therapeutic Targets

![Diagram of Endothelin Pathway, Nitric Oxide Pathway, and Prostacyclin Pathway]

Phosphodiesterase-5 Inhibitors

- **Sildenafil**
 - Approved dose: 20 mg tid
 - Approved for PAH (all classes)
- **Tadalafil**
 - Approved dose 40 mg once a day

PDE-5 Inhibitor

- **Sildenafil Improved**
 - Exercise capacity
 - Functional class
 - Hemodynamics

- **Tadalafil Improved**
 - Exercise capacity
 - Quality of life measures
 - Delayed clinical worsening
Riociguat

- It is a stimulator of soluble guanylate cyclase (sGC)
- Stimulates NO production
- Does not require endogenous NO

- Initiate at 1 mg taken 3 times a day and titrate by 0.5 mg every 2 weeks as tolerated to 2.5 mg

PATENT-1: Riociguat for PAH

Change in 6MWD At Week 12

Six-minute Walk Distance

Placebo-corrected treatment effect = 36 m (95% CI: 20-52 m; p<0.0001)

N=445. Double-blind, placebo-controlled Phase III trial. 50% of patients were on stable background PAH therapy with ERAs (43%) or prostacyclin (7%).

Ghofrani H, et al.
Approved Therapeutic Targets

Prostacyclin Analogue: Intravenous Subcutaneous, Inhaled

Epoprostenol (Flolan®)
Treprostinil (Remodulin®)
Prostacyclin Analogues:
Intravenous, Subcutaneous, Inhaled

Epoprostenol (Flolan®)
Treprostinil (Remodulin®)

Prostacyclin Analogues:
Intravenous, Subcutaneous, Inhaled

Iloprost (Ventavis®)
Treprostinil (Tyvaso®)

Epoprostenol (Flolan®)
Treprostinil (Remodulin®)
Prostanoid Side Effects

- Flushing
- Headache
- Diarrhea, nausea, vomiting
- Jaw pain
- Leg pain
- Hypotension
- Dizziness
- Syncope
- Cough (inhaled)
- Delivery site complications

Vary according to drug and route of delivery

Epoprostenol

- Synthetic salt of prostacyclin
- Rapid efficacy; short, 3- to 5-min half-life
- Approved for Class III and IV
- Invasive: requires continuous IV infusion
- Initiate at low dose 2ng/kg/min

Flolan® (epoprostenol sodium) package insert. GlaxoSmithKline. Research Triangle Park, NC.
Continuous IV Epoprostenol vs conventional therapy in IPAH

- Improved
 - Exercise Capacity
 - Hemodynamics
 - NYHA Class
 - Survival

Treprostinil

- Longer-acting prostacyclin analogue
- Subcutaneous and IV infusion;
- Approved for Class II-IV
- Efficacy slower than epoprostenol, requires higher doses

Remodulin® (treprostinil sodium) package insert. United Therapeutics Corp. Research Triangle Park, NC.
Inhalated Treprostinil

1. Inhalation device assembled
2. Measuring cup
3. One inhaled treprostinil ampule
4. Carrying case provided

Dosage delivery of 6 µg per breath.
Start at 3 breaths QID to upto 9 breaths QID

TYVASO (treprostinil) Improved Peak and Trough 6MWD at Week 12

<table>
<thead>
<tr>
<th>Peak(^a)</th>
<th>Trough(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6MWD, 6-minute walk distance; PBO, placebo.

\(^a\) Peak defined as measure between 10 and 60 minutes after dose. \(^b\) Trough defined as measure ≥24 hours after dose.
Iloprost

- Longer-acting prostacyclin analogue (20- to 30-min half-life)
- Aerosolized delivery system
- Approved for Class III and IV
- Requires frequent inhalations (6-9x/d)

I-neb® AAD® Once Daily Routine

<table>
<thead>
<tr>
<th>At the beginning of each day, load Blue case with 6 CLEAN meshes</th>
<th>Administer therapy</th>
<th>After treatment, remove USED mesh and place it in Red case</th>
</tr>
</thead>
</table>

At the end of each day, remove the USED meshes from the Red case and wash along with the mouthpiece and drug chamber in distilled water with 1 drop of liquid detergent.
PAH Determinants of Risk

<table>
<thead>
<tr>
<th>Lower Risk</th>
<th>Determinants of Risk</th>
<th>Higher Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Clinical evidence of RV failure</td>
<td>Yes</td>
</tr>
<tr>
<td>Gradual</td>
<td>Progression</td>
<td>Rapid</td>
</tr>
<tr>
<td>WHO class II, III</td>
<td>6MW distance</td>
<td>IV</td>
</tr>
<tr>
<td>Longer (>400 m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimally elevated</td>
<td>BNP</td>
<td>Very elevated</td>
</tr>
<tr>
<td>Minimal RV dysfunction</td>
<td>Echocardiographic findings</td>
<td>Pericardial effusion, significant RV dysfunction</td>
</tr>
<tr>
<td>Normal/near normal RAP and CI</td>
<td>Hemodynamics</td>
<td>High RAP, low CI</td>
</tr>
</tbody>
</table>

McLaughlin VV and McGoon M. In press.

PAH Evidence-based Treatment Algorithm

- Oral anticoagulants (E/B) – IVC/HRPH
- Diuretics (E/A)
- Oxygen (E/A)
- Digoxin (E/C)
- Supervised rehabilitation (E/B)
- **Expert referral (E/A)**
- **Supportive therapy and general measures**
- **Avoid excessive physical exertion (E/A)**
- **Birth control (E/A)**
- **Psychological and social support (E/C)**
- **Infection prevention (E/A)**

ACUTE RESPONDER

- WHO Class II
 - Ambienentan, Bosentan, Silidarelin (E)
 - **Sustained response (WHO I-II)**
 - **YES**
 - Ambienentan, Bosentan, Silidarelin, Epoprostenol (E)

NON-RESPONDER

- **WHO Class III**
 - Ambienentan, Bosentan, Epoprostenol IV (E)
 - **Strength of Recommendation**
 - A
 - Ambienentan, Bosentan, Epoprostenol IV (E)
 - **WHO Class III**
 - B
 - Sildenafil, Tadalafil (E)
 - **WHO Class IV**
 - C
 - Beraprost (E)
- **Sequential combination therapy**
 - Prostacyclins
 - **INADEQUATE CLINICAL RESPONSE**
 - **PDE-5 inhibitors**
 - **Atrial septectomy (E/B)**
 - **and/or lung transplant (E/A)**

E/R

- Not approved
- Epoprostenol IV, Tadalafil IV (E)
- Sequential combination therapy (E)

Strength of Recommendation

- A
- B
- C

WHO Class IV

- Epoprostenol IV (E)
- Tadalafil IV (E)
- Sequential combination therapy (E)
- Atrial septectomy (E/B)
- Lung transplant (E/A)
Treatment

Monitoring Response to Treatment

- 6 min walk
- Echocardiogram
- BNP
- Right heart Catheterization

On-therapy Prognostic Indicators

- Functional Class I or II
- 6MWD > 380 m
- Hemodynamics
 - Normal cardiac index (> 2.2 L/min/m²)
 - Normal RA pressure
- Positive response to CCB
- BNP <180 pg/mL
- Tricuspid Annular plane systolic excursion > 1.8 cm

Goal oriented therapy

- Improve functional status
- RA pressure less than 10 mmHg
- BNP less than 100
- 6 minute walk > 350 m

Goal Oriented Therapy

- If patient does not improve, what would you do?
 - Substitute therapy
 - Add therapies
Combination Therapy in PAH

- Endothelin receptor antagonists
- Prostanoids (IV, SC, PO, PI)
- Phosphodiesterase-5 inhibitors

PACES: Change From Baseline in 6MWD after adding Sildenafil to IV Epoprostenol

- Placebo (on the left)
- Sildenafil (on the right)

ATS, 2006

Goal Oriented Treatment and Combination Therapy for PAH

6MWD, 6-minute walk distance; NS, not significant.

Tadalafil Improved 6MWD in the Bosentan Treatment Subgroup

23-meter Improvement* after 16 weeks in background bosentan subgroup
p~NS

*Placebo-adjusted mean change.
Combination Therapy in PAH

Endothelin receptor antagonists

Prostanoids (IV, SC, PO, PI)

Phosphodiesterase-5 inhibitors

Atrial Septostomy

- Percutaneous catheter based technique
- Allows shunting from Right to left
- Shown to improve
 - clinical status
 - Long lasting benefit
- Carries a mortality of 5-6%
- Reserved for patients with refractory right heart failure or recurrent syncope despite maximal medical therapy
- Acceptable baseline oxygenation
- Poor outcome
 - mRA > 20mmHg
 - PVRI > 55u/m²
 - Not indicated in patients with hemodynamic instability
Transplantation

• Symptomatic, Progressive Ds

• NYHA class III or IV

• Hemodynamic parameters
 • Cardiac index < 2L/min/m2
 • RA pressures > 15 mmHg
 • mPA pressure > 55mmHg

1951

“Primary Pulmonary Hypertension”

• “Runs a malignant course, characterized by right heart failure, frequently ending in sudden death”

• “There is no effective treatment”