Running on Empty

Kathryn Nuss, MD
Associate Trauma Medical Director
Associate Director, Emergency Medicine
Nationwide Children’s Hospital
Associate Professor, Department of Pediatrics
The Ohio State University College of Medicine

Outline

- What is shock?
- Examine differences between kids and adults
- Management
- Case review
Importance

- All healthcare professionals who care for children will be faced with a child in shock
- Without appropriate intervention, death will ultimately occur
- Early recognition is *imperative*

What is Shock?
Historical Definitions

- In 1872, “a rude unhinging of the machinery of life”
- “A momentary pause in the act of death”
- Most recently, “the collapse and progressive failure of the cardiovascular system.”

Shock

- Acute process
- Complex series of events
- Reduced perfusion of vital organs → inadequate oxygen and nutrients necessary for normal tissue and cellular function
- Reduction of mitochondrial oxygen → anaerobic metabolism and production of lactic acid
Complex Series of Events

Untreated Shock
Types of Shock

- Hypovolemic – the focus of this lecture
- Distributive – septic and neurogenic
- Cardiogenic

Hypovolemic Shock

- *Decreased circulating blood volume*
- Most *common* cause of shock in children
- Due to blood, water or plasma losses
Common Causes

- Trauma ➔ hemorrhage
- Intracranial or GI bleed
- Vomiting and diarrhea
- Burns
- Pregnancy-related
- Peritonitis
- Sunstroke

Sources of Blood Loss from Trauma

- Scene
- Chest
- Abdomen
- Retroperitoneal
- Muscle compartments
Hemorrhagic Shock

- Divided into 4 classes
- Based on signs, symptoms and estimated degree of blood loss

| Classification of Hemorrhagic Shock in PEDIATRIC Trauma Patients based on Systemic Signs |
|---|---|
| Class I | Class II | Class III | Class IV |
| Very little hemorrhage (81% blood volume loss) | Moderate hemorrhage (15%–25% blood volume loss) | Severe hemorrhage (0%–39% blood volume loss) | Critical hemorrhage (>40% blood volume loss) |
| Cardiorespiratory | Respiratory | Central nervous | Kidneys |
| Hypotension, tachycardia | Hypoxia, tachypnea | Hypotension, tachycardia | Oliguria, increased specific gravity |
| Normal pulse | Normal or mildly decreased | Severe tachycardia | Oliguria, decreased BUN |
| Tachycardia | Hypoxia | Moderate tachycardia | Anuria |
| Hypoxia, tachypleo | Severe tachycardia | Severe tachypleo | |
| Moderate or severe tachypleo | Lactic acidemia | Lactic acidemia | |
| Lactic acidemia | Intolerable or lactic acidemia | Intolerable or lactic acidemia | |
| Corneal opacity | Unexplained | Unexplained | |
| Capillary refill delay | Capillary refill delay | Capillary refill delay | |
| Capillary refill delay | Capillary refill delay | Capillary refill delay | |
| Capillary refill delay | Capillary refill delay | Capillary refill delay | |

© 2011
Pediatric Shock

- Difficult to recognize for clinicians who do not primarily care for children
- In trauma patients, assessment of circulation is often overlooked

Just One Drop

- *Journal of Trauma, 2010*
- Temple University, Department of Surgery
- Prospective study in adult trauma patients
- *A single, isolated hypotensive event during a trauma resuscitation was indicative of severe injuries and the need for operative intervention.*
- *Hypotensive events should NOT be ignored*
Pediatric Trauma Care

- *No different than adult trauma care*
- Must consider unique aspects of a child
- Many differences compared to adults
 - Anatomic
 - Physiologic
 - Psychologic

How are kids different?
Smaller in size, but not just little adults
Anatomic Differences

- Shorter neck and trachea
- Larger face to head ratio
- Large tongue and tonsils
- Anterior/superior larynx
- Narrowest point at subglottic region
- Resembles adult by age 8
Head

- Thinner calvarium
- Open sutures
- Large scalp surface area
- Weaker neck muscles

Cervical Spine

- Fulcrum of spine is C2-C3
- Children < 14 yo have higher injuries
- Children > 14 yo have lower injuries
- Resembles adult by age 8
Chest

- More compliant chest wall
- More anterior position of the heart
- More mobile mediastinal structures

Abdomen

- Relatively larger abdomen
- Relatively larger organs
- Underdeveloped wall musculature
Skeleton

- More pliable bones
- Incomplete calcification
- Multiple ossification centers

Physiologic Differences
Perfusion

- *Relatively* larger blood volume
- Stroke volume is essentially fixed
- Cardiac output maintained by HR
- Increased sensitivity to catecholamines
- Increased arterial vascular tone

![Perfusion Diagram](image)

Review of Cardiac Output

- Determined by SV and HR
- SV depends on contractility, SVR, and ventricular filling volume
- *Children increase HR rather than SV in times of metabolic need (shock)*

\[
\text{CO (L/min)} = \text{SV (cc/beat)} \times \text{HR (beats/min)}
\]
Tachycardia

- **Most sensitive** indicator in pediatric shock
- **Not specific**
- Complete PE necessary to rule out shock as cause of tachycardia

Kids are Different

- Abundant physiologic reserve
- Demonstrate few signs of hypovolemia
- *Hypotension is a late sign of shock*
Take home messages

- Children can lose > 40% of their blood volume before they have a blood pressure change
- *Children can be in shock and have a normal BP*
Estimating Blood Volume

Pediatric Blood Volume

- 80 ml/kg
- Estimating Blood Volume: Weight (kg) X 80 ml/kg
12kg x 80 ml/kg = 1L blood volume

1 liter NS

12kg x 80 ml/kg = 1L blood volume
25 kg \times 80 \text{ ml/kg} = 2000 \text{ ml}

25 kg \times 80 \text{ ml/kg} = 2000 \text{ ml}
Estimating blood loss

- Calculate the blood volume (15 kg child)
- 15 kg child x 80 ml/kg = 1200 ml
- 30% blood loss x 1200 ml = 360 ml of blood

or....
15 kg x 80 ml/kg = 1200 ml x 30% = 360 ml
Thermoregulation

- High BSA-to-mass ratio
- *Increases the risk of hypothermia and dehydration*
- Hypothermia increases morbidity and mortality

Psychological Differences
Psychological

- Fairly predictable based on age
- Family presence extremely important
- Caretakers can aid with assessing mental status

Management of Shock
Goals

- Restore substrate delivery, mainly oxygen to the tissues
- Preserve brain and kidney function
- Control bleeding in trauma patients

Shock Management

- Requires functioning pump
- Adequate blood volume
- Intact vascular system
- Normothermia
- Recognition
Pediatric Assessment

*80% of your pediatric evaluation is based on observation alone

Circulation

- Requires rapid, accurate assessment
- Clinical observation of 3 components:
 - Level of consciousness
 - Skin color
 - Pulses (central vs. peripheral)
 - Fluid resuscitation
Running on Empty

Jonathan Groner, MD
Trauma Medical Director
Interim Chief, Department of Pediatric Surgery
Nationwide Children’s Hospital
Professor of Clinical Surgery
The Ohio State University College or Medicine

Traditional Approach

- **Adults:** 2-3 liters of crystalloid
- **Pediatrics:** 40-60 ml/kg of crystalloid
Responses to Resuscitation

Table 2—Responses to Initial Fluid Resuscitation

<table>
<thead>
<tr>
<th></th>
<th>RAPID RESPONSE</th>
<th>TRANSIENT RESPONSE</th>
<th>NO RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vital signs</td>
<td>Return to normal</td>
<td>Transient improvement, recurrence of ↓ BP and ↑ HR</td>
<td>Remain abnormal</td>
</tr>
<tr>
<td>Estimated blood loss</td>
<td>Minimal (10%–20%)</td>
<td>Moderate and ongoing (20%–40%)</td>
<td>Severe (>40%)</td>
</tr>
<tr>
<td>Need for more crystalloid</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Need for blood</td>
<td>Low</td>
<td>Moderate to high</td>
<td>Immediate</td>
</tr>
<tr>
<td>Blood preparation</td>
<td>Type and crossmatch</td>
<td>Type-specific</td>
<td>Emergency blood release</td>
</tr>
<tr>
<td>Need for operative</td>
<td>Possibly</td>
<td>Likely</td>
<td>Highly likely</td>
</tr>
<tr>
<td>intervention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early presence of surgeon</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

2000 mL Ringer’s lactate solution in adults, 20 mL/kg Ringer’s lactate bolus in children.

Advantages of Crystalloids

- Increase circulation to the brain and kidneys
- Readily available in the pre-hospital setting
- Circulation of blood we do have in the vascular system
Drawbacks

- May increase hemorrhage and/or disrupt clots by increasing BP
- Do not contain the components of whole blood
- May dilute clotting factors
- No oxygen-carrying capacity

Case review

For each case:
- GOOD = rapid response
- BAD = transient response
- UGLY = no response
Case 1

- 10 year old boy riding “BMX” bicycle
- Falls while attempting aerial maneuver
- Arrives in at outside hospital complaining of vague abdominal pain
- CT scan negative
- Sent home

Case 1 continued

- Arrives at your hospital 2 days later
- Awake, alert, oriented
- Weight = 40 kg
- 24 hour history of vomiting
- Diffuse abdominal pain, tender
- Heart rate 120, respiratory rate 16, blood pressure 125/80, capillary refill 5 seconds
- What would you do?
Case 1 continued

- What is this patient's blood volume?
- What is this patient's hemodynamic status (good, bad, or ugly)
- Does this patient need a fluid bolus?
- What do you suspect is the problem?
Case 1 continued

• What is this patient’s blood volume?
 • Roughly 3.2 liters
• What is this patient’s hemodynamic status (good, bad, or ugly)
• Does this patient need a fluid bolus?
• What do you suspect is the problem?

Case 1 continued

• What is this patient’s blood volume?
 • Roughly 3.2 liters
• What is this patient’s hemodynamic status (good, bad, or ugly)
 • Bad (tachycardic, poor cap refill)
• Does this patient need a fluid bolus?
• What do you suspect is the problem?
Case 1 continued

- **What is this patient’s blood volume?**
 - Roughly 3.2 liters
- **What is this patient’s hemodynamic status (good, bad, or ugly)?**
 - Bad (tachycardic, poor cap refill)
- **Does this patient need a fluid bolus?**
 - Yes (800 ml warm Normal Saline)
- **What do you suspect is the problem?**
Case 2

- 3 year old playing in yard at dusk
- Brother cutting lawn on riding mower
- Runs over child causing several leg wounds
- Local EMS unit calls for helicopter
- Wounds are wrapped

<table>
<thead>
<tr>
<th>3 year old playing in yard at dusk</th>
<th>Brother cutting lawn on riding mower</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runs over child causing several leg wounds</td>
<td>Local EMS unit calls for helicopter</td>
</tr>
<tr>
<td>Wounds are wrapped, IV started, 150 ml bolus given, morphine 0.1 mg/kg IV</td>
<td>Weight is 15 kg</td>
</tr>
</tbody>
</table>
Case 2

- On arrival, pulse is 110, BP is 90/50, he is crying softly and awake
- Because of contamination in the wounds and associated fractures, the orthopedic team wants to take the patient to the OR ASAP.

Case 2

What is his blood volume?

What is the correct fluid bolus?

What should you worry about when team ortho takes him to the OR?
Case 2

What is his blood volume?
- 1200 ml

What is the correct fluid bolus?

What should you worry about when team ortho takes him to the OR?

Is this patient good, bad, or ugly?

- 300 ml of WARM saline
Case 2

He's bad, but could become ugly due to:

- **HYPOTHERMIA**
 - Warm IV fluids
 - Warm O.R. (even if they complain)
 - Forced warm air blankets

- **BLOOD LOSS**
 - Difficult to calculate in ortho environment
 - Consider early transfusion
Case 3

- 15 year old girl brought to emergency department by friend
- No history of trauma
- Distended and tender abdomen
- Previous history of pregnancy (terminated) at age 14
- Approximate weight: 50 kg

Patient extremely agitated “please help me – I’m going to die!”
- Heart rate 155, first blood pressure 80/45, respiratory rate 24
- BP 100/60, HR = 155 after 1 liter of normal saline and 2nd liter initiated
- Bedside ultrasound (by radiologist) shows free fluid in abdomen, enlarged uterus
Case 3

- Heart Rate > 150 and BP 85/45 after 2nd 1000 ml of IV fluids
- 2 units of PRBC given by rapid infuser through 18 gauge peripheral IV
- Patient remains tachycardic with BP 90/60
- Abdomen appears more distended

Case 3

- Is this patient
 - Good?
 - Bad?
 - Or Ugly?
Case 3

• Is this patient
 • Good?
 • Bad?
 • Ugly (uncompensated shock, no response to fluids and blood)

Case 3

• Patient taken rapidly to operating room
• Well over 1000 ml of blood in abdomen
• 2 more units of PRBC given in OR
Case 3

- Diagnosis: ruptured ectopic pregnancy
- Treatment:
 - Recognition and management of shock
 - Restoration of blood volume
 - Operative control of bleeding
Case 3

Moral:
The skills that you develop for treating trauma patients (such as recognition of shock) can help you treat other patients

Conclusion

Recognition of shock is based on vital signs and physical findings

“When all else fails, examine the patient”