Robotic Thoracic Surgery

Patrick Ross, Jr., MD, PhD
Professor and Chief
Division of Thoracic Surgery
The Ohio State University Wexner Medical Center
Compelling Data for VATS

- Published series defining outcomes
- Comparative effectiveness studies
- Added value for minimally invasive surgery
 - More likely to complete adjuvant therapy
 - Less immunologic impact
 - Improved short term outcomes with decreased length of stay and quicker recovery

Maximizing the benefit of minimally invasive surgery
Mohiuddin and Swanson 2013 J Surg Oncol 108:315-319

- MIS is preferable in patients with significant comorbidities
 - Pulmonary impairment
 - Cardiac disease
 - Poor performance status
 - Advanced age
 - Recent or impending major operations
 - Immunosuppression
 - Rheumatologic/skeletal abnormalities

MIS

- Potential Benefits
 - Shorter hospital stay
 - Shorter recovery time
 - Less post operative pain
 - Less immune compromise
Minimally Invasive Surgery

- Minimally invasive procedures add value to the patient
- Minimally invasive approaches require development of expertise
- VATS procedures are a heterogeneous pool and not a single operation
- Majority of lobectomies are performed with thoracotomy despite thoracoscopy becoming available in 1990’s

Initial consecutive experience of completely portal robotic pulmonary resection with 4 arms
Robert J. Cerfolio, MD, FACS, FCCP, Ayesha S. Bryant, MD, MSPH, Loki Skylizard, MD, and Douglas James Minnich, MD, FACS
J Thorac CardiovascSurg 2011;142:740-6

- 168 Pulmonary resections
 - 148 completed robotically
 - 106 lobectomy
 - 26 wedge resection
 - 16 segmentectomy
- 318 open thoracotomy resections

Open, video assisted thoracic surgery, and robotic lobectomy: review of a national database

- Time Period 2008-2010
- Surgical Approach
 - Open thoracotomy 20,238
 - VATS 12,427
 - Robotic 430
- LOS
 - Open 8.2 days
 - Robotic 5.9 days
- Mortality
 - Open 2.0%
 - Robotic 0.2%
- Morbidity
 - Open 54.1%
 - Robotic 43.8%
Ohio State Center for Robotic Surgery

◆ First robotic procedure: 1999
 IMA (internal mammary artery) takedown

◆ 9 Surgical specialties utilize the robotic platform

◆ 10,000th Robotic Procedure: May 2014 (est)

Challenges to the Surgeon

• Learning a new set of instruments
 – Same technique; different platform
• Discomfort associated with being at console not operating table
• Relying on bedside assistant for critical components of operation
• Inefficiencies introduced to operating day
• Longer procedure times
• Additional costs

Development of the Team

<table>
<thead>
<tr>
<th>Surgical Team</th>
<th>Operating Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Surgeon/ PA</td>
<td>– Nurses/ Techs</td>
</tr>
<tr>
<td>– Didactic videos/training</td>
<td>– Case observation</td>
</tr>
<tr>
<td>– Case observations</td>
<td>– Dry lab for docking</td>
</tr>
<tr>
<td>– Dry lab</td>
<td>– Cadaver lab</td>
</tr>
<tr>
<td>– Cadaver lab</td>
<td>– Double scrub cases</td>
</tr>
<tr>
<td>– Building skills in VATS and open cases</td>
<td>– In-service training</td>
</tr>
<tr>
<td>– Consistency</td>
<td>– Desensitization</td>
</tr>
</tbody>
</table>

• Consistency
Technical Considerations

- Think low for camera port
 - 8th or 9th interspace
- Allow adequate space between ports
 - 8 – 10 cm
- Keep arm ports inferior to fissures
- Place assistant port inferiorly and anteriorly
- Minimize blunt dissection
 - Utilize energy for dissection
- Maintain dry operating field
- Dissect artery, vein, bronchus completely

Thoracic Robotic Surgery

- 350 Procedures
- 205 Lobectomy
- 45 Mediastinal
- 25 Esophagectomy
- 75 Sublobar/Wedge Resection

Technical Considerations

- Use anterior arm to gain control of bleeding to facilitate posterior thoracotomy
- Use blunt retraction on lung
Conversions from Robotic Assisted

- 8% conversion rate during lobectomy
- 50% of conversions occurred in first 35 cases
Video of Robotic Thoracic Surgery

Extrapleural Right Upper Lobectomy

Age Distribution

Number of patients

Cell Type of Patients Undergoing RATS Lobectomy (n=100)
Lobectomy

Average Time of Lobectomy by Lobe

Average Time of Lobectomy by Lobe

Lobectomy by Stage (NSCLC)
Robotic Surgery: Induction Therapy

- Time of procedure, length of stay, duration of chest tubes, and estimated blood loss for induction patients are no different than for patients who had no induction therapy.
- Induction patients had no significant complications after lobectomy.
- No 90-day mortality after lobectomy for induction patients.

Advantages to Surgeon

- Visualization
- Range of motion
- Precision of dissection
- Two operating hands
- Ambidextrous instrumentation
- Same principles as open procedure
- Patient preference/patient satisfaction

Advantages to Patient

- Smaller incisions; true port surgery
- Less pain acutely
- Less chronic pain
- Quicker return to lifestyle
- Improved ability to tolerate adjuvant therapy
- Better oncologic outcome?
Robotic Operations for Abdominal Cancers

Carl Schmidt, MD, FACS
Associate Professor of Surgery
Division of Surgical Oncology
The Ohio State University Wexner Medical Center

Abdominal/Pelvic Cancers

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Estimated deaths in 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colon/rectum</td>
<td>50,310</td>
</tr>
<tr>
<td>Pancreas</td>
<td>39,590</td>
</tr>
<tr>
<td>Prostate</td>
<td>29,480</td>
</tr>
<tr>
<td>Liver and bile duct</td>
<td>23,000</td>
</tr>
<tr>
<td>Ovary</td>
<td>14,270</td>
</tr>
<tr>
<td>Esophagus</td>
<td>12,450</td>
</tr>
<tr>
<td>Bladder</td>
<td>11,170</td>
</tr>
<tr>
<td>Uterus</td>
<td>8,590</td>
</tr>
<tr>
<td>Kidney</td>
<td>8,900</td>
</tr>
</tbody>
</table>

Total – 197,760 deaths

Cancer Statistics, 2014, American Cancer Society
Minimally-Invasive Surgery

- Laparoscopic or robotic procedures for most abdomen/pelvis cancers

- Benefits include
 - Small incisions
 - Less pain medication
 - Quicker return of bowel function
 - Hospital length of stay
 - Earlier return to work and usual activity

Small incisions

Robotic Surgery

- A tool for minimally-invasive operations

- 3D binocular vision – zooms in for tight spaces

- Increased degrees of freedom at wrist

- Longer OR time

- Increased cost

Robotics and Surgical Oncology

- Encouraged by experience of urologists and GYN-oncologic surgeons

- Four surgical oncologists began using the robot in 2010 – first with colorectal and adrenal cancers

- Future potential versus “falling behind”
OSU Robotic Surgical Oncologists

Sherif Abdel-Misih
Colorectal, gastric, GI

Mark Bloomston
Pancreas and GI

John Phay
Adrenal cancers

Carl Schmidt
Liver and GI

Total 165 robotic abdominal and pelvic operations to date

Key Factor to Success is Teamwork

Problem-Solving

Fun
Esophagus Cancer

- Adenocarcinoma type increasing dramatically due to acid reflux and other causes
- Aggressive cancer with high rate of mortality
- Many patients are treated with surgery, radiation and chemotherapy
Removal of esophagus cancer

Video Showing Robotic Surgery Team

Removal of esophagus cancer

Robot esophagectomy – Ed Kassis

Robot esophagectomy at OSU

- 20 operations in first year
- 95% treated first with chemoradiation
- Two required conversion to open technique
- Two tumors were not removable
- OR time average almost 10 total hours
- Hospital stay about 8 days
- 18% leak rate – no perioperative deaths
Final Thoughts

• Our outcomes after abdominal and pelvic cancer operations depend mostly on cancer stage and complications.

• It will be a good day when the main concern of any cancer patient is the size of a scar.

• Robotic technology is helping us do better operations but proof is required.