Lung Cancer Screening

Patrick Nana-Sinkam, MD, FCCP
Associate Professor of Medicine
Co-Director Research Programs
Division of Pulmonary, Allergy,
Critical Care & Sleep Medicine
The Ohio State University Wexner Medical Center

What is new in lung cancer?

- New Staging system
- Goal of simultaneous diagnosis and staging
- Advantages of EBUS/EUS
- PET scan caveats
- Importance of EGFR/ALK status in treatment decisions
- Screening

Learning Objectives

- Review the epidemiology of lung cancer
- Historical perspective on lung cancer screening
- National Lung Screening Trial
- Current guidelines for lung cancer screening

Lung Cancer in the United States

<table>
<thead>
<tr>
<th>New Cases</th>
<th>Rank</th>
<th>Deaths</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>239,320</td>
<td>1</td>
<td>161,250</td>
<td>1*</td>
</tr>
</tbody>
</table>

*More deaths than prostate, breast and colon cancer combined; 85% of lung cancer is NSCLC

Jemal A et al. CA Cancer J Clin. 2011
5-Year Survival for Lung Cancer Over the Past 25 Years

<table>
<thead>
<tr>
<th>Year</th>
<th>Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1974-1976</td>
<td>12%</td>
</tr>
<tr>
<td>1983-1985</td>
<td>14%</td>
</tr>
<tr>
<td>1995-2001</td>
<td>15%</td>
</tr>
</tbody>
</table>

*P<0.05 vs 1974-1976

Risk Factors for NSCLC

- Smoking (85% of cases)
- Occupational carcinogens
 - Asbestos
 - Radon
 - Nickel
- Nutrition/Diet
- Genetic factors
- 2nd Hand Smoke (~5%)

Lung cancer is a global problem

Challenges in Lung Cancer Diagnosis and Treatment

- How do we screen for lung cancer?
- How do we identify “early disease”?
- Are we staging patients correctly?
- Identifying new therapeutic targets
- Further characterizing the molecular heterogeneity in lung cancer
- Clinically relevant biomarkers (sputum, blood, CT, tumor?)
- Is lung cancer in non-smokers a different disease?
Case

- 60 year old male presents to your clinic to enquire about being “screened” for lung cancer
- 60 pack year smoker
- HTN, DM
- Fam hx: CAD
- Exam: nonfocal
- How would you advise this patient?

Keys to Lung Cancer Screening?

- Sensitive
- High incidence and prevalence
- Diagnose early treatable disease
- Decrease number of patients with late disease
- Cost effective
- Decrease mortality
- Lack of overdiagnosis
- Minimal morbidity

Rationale for Lung Cancer Screening

- Smoking cessation helps, but residual risk remains
 - Quit at age 50 risk by age 75 is 6%
- Improved survival with early stage disease
 - 5-Yr Survival all comers: 15%
 - Resected clinical Stage I: 92% per I-ELCAP; 75% SEER
- Why not start screening high-risk individuals now?

Historical Perspective on Lung Cancer Screening

- Philadelphia Pulmonary Neoplasm Research Project
- Lung Screening Feasibility Study 3318 patients CT vs. CXR
- Mayo Lung Project
- Czech Study
- Johns Hopkins
- MSK

- Mayo Lung Project
- Czech Study
- Johns Hopkins
- MSK

- PLCO
- ELCAP
- Single arm low dose CT

- Mayo Lung Project
- Czech Study
- Johns Hopkins
- MSK

- PLCO
- ELCAP
- Single arm low dose CT
Mayo Lung Cancer Screening Project

9211 Study Participants

Screened Group
CXR & pooled sputum
q 4 months

Standard care recommendation
at study entry

Lung Cancers=206
Stage I & II (resected) 83 (40%)
Late-stage (unresected) 123 (60%)

Lung Cancers=180
Stage I & II (resected) 41 (25%)
Late-stage (unresected) 119 (75%)

- Between 1971 and 1983
- Screened: every 4 months for 6 years
- Control of CXR and sputum annually
- Survival: 40% in screened and 15% in control
- No difference in mortality

Marcus, JNCI 2000

International Early Lung Cancer Action Project

- Based on ELCAP
- Prospective, international, multi-institutional study
- 31,567 patients at high risk for lung cancer screened
- Criteria for enrollment varied by institution
- 27,456 annual screens

Mayo Lung Project Lung Cancer Mortality

- Extended follow-up through 1996 using part national death index
- Median follow-up of 20.5 years
- No difference in mortality (4.4 deaths /1000 versus 3.9/1000)

Marcus, JNCI 2000

ELCAP

- Low-dose CT per ELCAP protocol
- Diagnostic work-up recommended but decision as to how to proceed left to individual and their physician
- Total lung cancers 484 out of 535 biopsies
 - 412 (85%) Clinical Stage I
 - Benign diagnoses: 43; Lymphoma or metastases from other cancer 13
 - 90.5% positivity rate

Dr. Henschke’s estimate that CT screening could reduce deaths by 80% is “an outrageous and implausible claim.” But … “it really got people to pay attention.”

Dr. Peter Bach, NYT Tuesday, October 31, 2006

...however, the debate continues

Sounds Good Right? Maybe not

- No comparison group
- Lead time bias
- Survival versus mortality
- Inconsistencies in lung cancer deaths
- No comment as to how many biopsies done outside protocol
- What was the course of those with positive screening but no biopsy?
- 10 year survival estimated to be 88% but median follow-up was 40 months

Longitudinal analysis of 3246 asymptomatic current or former smokers

Screening started in 1998
Annual CT scans median followup is 3.9 years
144 diagnoses among screened compared to 44.5 expected
Increased diagnoses and resections
Lead Time Bias

- Symptom onset
- Natural course

Length Time Bias

- Symptom onset
- Natural course

Overdiagnosis

- Symptom onset
- Overdiagnosis bias

Lessons From CT Observational Trials

- Detected prevalence rate: 0.40 – 2.7%
 - Age is strong risk factor (> 60 years)
 - Pack year smoking history
- Nodule detection rate variable on CT: 5.1% - 51.4%
 - Function of [a] definition of “nodule” and [b] CT slice thickness
 - Benign nodules = majority of detected nodules: ~90%
- CT results in higher lung cancer detection than CXR
 - ≥ 3-fold higher detection rate vs CXR; excess cancers early stage
 - 2-3 fold selective oversampling of adenocarcinoma
 - Stage shift not yet been shown
NLST

- Randomized CXR versus low-dose helical CT scan
- Initially screening followed by annual for two years
- 53,454 participants
- Ages 55-74
- Heavy smoker or former smoker (30 pack years)
- Asymptomatic
- No prior cancer
- Powered to detect 20% reduction in mortality

Patient Demographics

<table>
<thead>
<tr>
<th>Category</th>
<th>CT #</th>
<th>CT %</th>
<th>CXR #</th>
<th>CXR %</th>
<th>Total #</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>15776</td>
<td>59.0%</td>
<td>10951</td>
<td>41.0%</td>
<td>31545</td>
<td>59.0%</td>
</tr>
<tr>
<td>Female</td>
<td>10951</td>
<td>41.0%</td>
<td>15769</td>
<td>59.0%</td>
<td>21919</td>
<td>41.0%</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS or Less</td>
<td>7913</td>
<td>29.7%</td>
<td>8047</td>
<td>30.2%</td>
<td>15960</td>
<td>29.9%</td>
</tr>
<tr>
<td>More than HS</td>
<td>18212</td>
<td>68.2%</td>
<td>18053</td>
<td>67.5%</td>
<td>36265</td>
<td>67.8%</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>12884</td>
<td>48.2%</td>
<td>12921</td>
<td>48.3%</td>
<td>25805</td>
<td>48.3%</td>
</tr>
<tr>
<td>Former</td>
<td>13837</td>
<td>51.8%</td>
<td>13805</td>
<td>51.6%</td>
<td>27642</td>
<td>51.7%</td>
</tr>
</tbody>
</table>

N = 53,464

NLST (2002-2009)

- Initial screening 39% positive rate in low-dose CT and 16.0% in CXR
- 96.4% (CT) and 94.5% (CXR) false positive rate
- 1600 (CT) and 941(CXR) lung cancers
- 20% reduction in lung cancer related mortality
- 6.7% reduction in all cause mortality
- 90% Caucasian, 4.5% AA, 1.8% Latino

Patient Demographics

<table>
<thead>
<tr>
<th>Category</th>
<th>CT #</th>
<th>CT %</th>
<th>CXR #</th>
<th>CXR %</th>
<th>Total #</th>
<th>Total %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>15776</td>
<td>59.0%</td>
<td>10951</td>
<td>41.0%</td>
<td>31545</td>
<td>59.0%</td>
</tr>
<tr>
<td>Female</td>
<td>10951</td>
<td>41.0%</td>
<td>15769</td>
<td>59.0%</td>
<td>21919</td>
<td>41.0%</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS or Less</td>
<td>7913</td>
<td>29.7%</td>
<td>8047</td>
<td>30.2%</td>
<td>15960</td>
<td>29.9%</td>
</tr>
<tr>
<td>More than HS</td>
<td>18212</td>
<td>68.2%</td>
<td>18053</td>
<td>67.5%</td>
<td>36265</td>
<td>67.8%</td>
</tr>
<tr>
<td>Smoking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current</td>
<td>12884</td>
<td>48.2%</td>
<td>12921</td>
<td>48.3%</td>
<td>25805</td>
<td>48.3%</td>
</tr>
<tr>
<td>Former</td>
<td>13837</td>
<td>51.8%</td>
<td>13805</td>
<td>51.6%</td>
<td>27642</td>
<td>51.7%</td>
</tr>
</tbody>
</table>

N = 53,464

NLST Caveats

Important caveats (positives)
- Prospective randomized nature of study
- 6.9% reduction in all cause mortality
- No universal protocol for follow-up of positive CT scan so likely to be reproducible in community

Important caveats (negatives)
- Reduction in deaths in a target group (ages 55-74) so extrapolation not possible
- Small number of lung cancer deaths (LDCT 354 vs. 442 CXR)
- Cost analysis
- High false positive rate (96-97%)
NELSON

- Launched in 2003
- 16,000 patients
- Screening by MDCT versus no screening
- Years 1, 2 and 4
- Volumetric nodule assessment
- Powered to detect mortality reduction of 20%

Screening: public perspective

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Never smokers (n = 925)</th>
<th>Former smokers (n = 517)</th>
<th>Current smokers (n = 559)</th>
<th>All subjects (n = 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief that he/she is at risk for lung cancer (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2.8</td>
<td>7.7</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>90.8</td>
<td>77.4</td>
<td>36.2</td>
<td></td>
</tr>
<tr>
<td>Belief that early detection of lung cancer results in a good chance of surviving (%)</td>
<td>58.8</td>
<td>54.0</td>
<td>48.7</td>
<td></td>
</tr>
<tr>
<td>Willingness to consider screening for lung cancer (%)</td>
<td>87.6</td>
<td>86.1</td>
<td>71.7</td>
<td>82.8</td>
</tr>
<tr>
<td>Willing to have surgery for lung cancer (%)</td>
<td>69.2</td>
<td>82.5</td>
<td>60.5</td>
<td>62.2</td>
</tr>
</tbody>
</table>

Smoking Cessation is Essential

Effects of stopping smoking at various ages on the cumulative risk (%) of death from lung cancer up to age 75, at death rates for men in UK in 1990. Nonsmoker rates were taken from US prospective study of mortality

Screening: physicians’ perspective

Peto R, BMJ, 2000

Klabunde, C., American Journal of Preventive Medicine, 2010
Caveats to Lung Cancer Screening

- High false positive rates
- Cost analyses have yet to be completed
- Unclear how patients should be screened beyond 3 years of annual screening
- ASCO, ACCP and NCCN all now recommend screening for lung cancer in select patients
- Smoking cessation remains the most important intervention in these patients

Biomarkers for screening on the Horizon

- Exhaled breath condensate
- Circulating tumor cells
- Molecular staging
- Autofluorescence bronchoscopy

Ohio State Lung Cancer Screening

- Started May 2012
- Patient screened through James line 614 293-5066
- Inclusion criteria
 - 55-74 years of age
 - 30 pack smoker (current) or quit within 15 years
- Location: Martha Morehouse, every other Monday 4-6pm
- Cost 99.00
- CT conducted, interpreted and reviewed with patient during the visit
- Requires 3 annual CT scans
- Opportunity for Tobacco dependence clinic, General Pulmonary referral
- Expedited evaluation of pulmonary nodules if detected

Case

- 60 year old male presents to your clinic to enquire about being “screened” for lung cancer
- 60 pack year smoker
- HTN, DM
- Fam hx: CAD
- Exam: nonfocal
- How would you advise this patient?
Lung Cancer Screening

Efe Ozkan, MD
Assistant Professor
Section of Thoracic Imaging
Department of Radiology
The Ohio State University Wexner Medical Center

Objectives

- Radiologic screening tests
- Radiologic screening trials
- Pulmonary nodule work-up
- Screening challenges

Why Lung Cancer Screening?

<table>
<thead>
<tr>
<th>Stage</th>
<th>5-year Survival Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>I A</td>
<td>50%</td>
</tr>
<tr>
<td>I B</td>
<td>43%</td>
</tr>
<tr>
<td>I I A</td>
<td>36%</td>
</tr>
<tr>
<td>I I B</td>
<td>25%</td>
</tr>
<tr>
<td>I I I A</td>
<td>19%</td>
</tr>
<tr>
<td>I I I B</td>
<td>7%</td>
</tr>
<tr>
<td>I V</td>
<td>2%</td>
</tr>
</tbody>
</table>

J Thorac Oncol, 2007;2(8):706-14

Ideal Screening Test

- Detect asymptomatic cancers
- Reduce lung cancer specific mortality rate
<table>
<thead>
<tr>
<th>Ideal Screening Test</th>
<th>Screening Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reasonable sensitivity, specificity, accessibility, cost and associated risks</td>
<td>• PLCO Trial</td>
</tr>
<tr>
<td></td>
<td>• I-ELCAP</td>
</tr>
<tr>
<td></td>
<td>• NLST</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Which Radiologic Screening Test ?</th>
<th>PLCO Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Chest X-Ray (CXR)</td>
<td>• The Prostate, Lung, Colorectal and Ovarian Trial</td>
</tr>
<tr>
<td>• Computed Tomography (CT)</td>
<td>• Over 154,000 asymptomatic people</td>
</tr>
<tr>
<td></td>
<td>• PA CXR annually for 4 yrs vs usual care – no screening</td>
</tr>
</tbody>
</table>

NEJM 2000;343:1627-33

JAMA 2011;340:1865-3
<table>
<thead>
<tr>
<th>PLCO Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Similar mortality rates between the two groups</td>
</tr>
<tr>
<td>• Annual screening with CXR does not reduce lung cancer mortality</td>
</tr>
</tbody>
</table>

JAMA 2011;340;1865-3

<table>
<thead>
<tr>
<th>Screening with CXR</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Difficult to detect the early stage cancers with chest radiographs</td>
</tr>
</tbody>
</table>
Screening with CT

- Multi-detector helical CT –
 - Low dose
 - Entire chest in a single breath
 - Thin slice thickness
 - Detect smaller nodules
 - Free of partial volume effect

Low-Dose Chest CT

![CT images](image)

Low-Dose vs Routine Chest CT

<table>
<thead>
<tr>
<th>Low-Dose</th>
<th>Routine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5 mSv</td>
<td>8 mSv</td>
</tr>
</tbody>
</table>

I-ELCAP

- International Early Lung Cancer Action Program
- Over 31,000 asymptomatic people
- Low-dose CT between 1993-2005

NEJM 2006;355:1763-71
I-ELCAP

- Diagnosis of lung ca in 484 participant
- 412 (85%) had stage I lung ca
- 10-yr survival rate of 88%

NEJM 2006;355:1763-71

NLST Eligibility

- Age 55-74 years
- Current or former > 30 pack/yr smoking history
- If former smokers, quit in last 15 yrs

NEJM 2006;355:1763-71

NLST

- National Lung Cancer Screening Trial
- Prospective randomized controlled trial
- 33 sites in US
- Over 53,000 participants
- Annual screening for 3 consecutive yrs with Low-dose chest CT or CXR

NEJM 2011;365:395-409

NLST

- In November 2010, NLST was discontinued early because:

 Compared with CXR, CT reduced Lung cancer mortality by 20%
 All-cause mortality by 7%

NEJM 2011;365:395-409
NLST Lung Ca Mortality

<table>
<thead>
<tr>
<th>CT Arm</th>
<th>CXR Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ 26,722 patients</td>
<td>✓ 26,732 patients</td>
</tr>
<tr>
<td>✓ 1060 lung ca</td>
<td>✓ 941 lung ca</td>
</tr>
<tr>
<td>✓ 365 deaths</td>
<td>✓ 443 deaths</td>
</tr>
</tbody>
</table>

Relative reduction of 20% by CT

NEJM 2011;365:395-409

Pulmonary Nodule Work-Up

- Definitive benign features
- Suspicion of malignancy
- Fleischner Society recommendations
- Follow-up, PET/CT, biopsy, surgery

NLST Interpretation

- **Positive Screen**
 - Noncalcified nodule ≥ 4 mm
 - Other findings suspicious for lung ca

- **Negative Screen**
 - Noncalcified nodule < 4 mm
 - Morphologically benign nodule
 - Other abnormalities not suspicious for lung ca

NEJM 2011;365:395-409

Benign Calcifications

- Prior infection (tb, histo)
 - Diffuse
 - Central
 - Contentric

- Hamartoma
 - Popcorn
Pulmonary Nodule

Diffuse Calcification=Benign

Central Calcification=Benign
Pulmonary Nodule

Popcorn Calcification = Benign (Hamartoma)

Intranodular Fat = Benign (Hamartoma)
<table>
<thead>
<tr>
<th>Spiculated-Irregular-Lobulated Margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Typically associated with malignancy</td>
</tr>
<tr>
<td>• Occasionally infection/inflammation</td>
</tr>
<tr>
<td>Lobulated Margin</td>
</tr>
<tr>
<td>------------------</td>
</tr>
</tbody>
</table>
| ![Lobulated Margin Image](image) | - Ground glass opacity (GGO)
- Mixed solid/GGO
- Solid |

<table>
<thead>
<tr>
<th>Untreated-Lost to Follow-up</th>
<th>Density</th>
</tr>
</thead>
</table>
| ![Untreated-Lost to Follow-up Image](image) | ![Density Diagram](image)
- GGO
- Mixed solid/GGO
- Solid

Adenocarcinoma in situ
Invasive adenocarcinoma
Size

- **Nodule**: <3cm, benign or malignant
- **Mass**: >3cm, often malignant

Radiology 2005;235:259-65

Growth

- **Doubling time (DT)**
- **Malignancy DT**: 30-450 days
- **Benign DT**: <30 - >450 days
- **Infectious/inflammatory**: <20 days

Size

<table>
<thead>
<tr>
<th>Size</th>
<th>Total</th>
<th>Malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 4 mm</td>
<td>2038</td>
<td>0%</td>
</tr>
<tr>
<td>4-7 mm</td>
<td>1034</td>
<td>1%</td>
</tr>
<tr>
<td>8-20 mm</td>
<td>268</td>
<td>15%</td>
</tr>
<tr>
<td>> 20 mm</td>
<td>16</td>
<td>75%</td>
</tr>
</tbody>
</table>

Radiology 2005;235:259-65

<table>
<thead>
<tr>
<th>Date</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4/2011</td>
<td>1/2012</td>
<td>7/2012</td>
<td>10/2012</td>
</tr>
</tbody>
</table>

Radiology 2005;235:259-65
Fleischner Society Recommendations

<table>
<thead>
<tr>
<th>Nodule Size</th>
<th>Low-Risk</th>
<th>High-Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤4 mm</td>
<td>No follow-up</td>
<td>12 mos</td>
</tr>
<tr>
<td>> 4-6 mm</td>
<td>12 mos</td>
<td>6-12 mos</td>
</tr>
<tr>
<td></td>
<td>18-24 mos</td>
<td>3-6 mos</td>
</tr>
<tr>
<td>> 6-8 mm</td>
<td>6-12 mos</td>
<td>3-6 mos</td>
</tr>
<tr>
<td></td>
<td>18-24 mos</td>
<td>9-12 mos</td>
</tr>
<tr>
<td>> 8 mm</td>
<td>3 mos</td>
<td>3 mos</td>
</tr>
<tr>
<td></td>
<td>9 mos</td>
<td>9 mos</td>
</tr>
<tr>
<td></td>
<td>24 mos</td>
<td>24 mos</td>
</tr>
</tbody>
</table>

Radiology 2005;237:395-400

Screening Challenges

- False-positive nodules: Most nodules are benign
- Cost effectiveness: Unknown
- Radiation exposure

Fleischner Society Recommendations

- LOW RISK: minimal or absent hx of smoking or other known risk factors
- HIGH RISK: hx of smoking or other known risk factors
- KNOWN RISK FACTORS: hx of lung ca in 1st degree relative, exposure to asbestos, radon and uranium

DO NOT APPLY TO:

- Patients with known or suspected cancer
- Young patients < 35 yo
- Patients with unexplained fever
<table>
<thead>
<tr>
<th>Radiation Exposure</th>
<th>Radiation Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Background radiation: 3 mSv/yr</td>
<td>• Lung cancer risk:</td>
</tr>
<tr>
<td>• Routine chest CT: 8 mSv</td>
<td>50 yo F smoker: 16.9%</td>
</tr>
<tr>
<td>• Low dose chest CT: 1.5 mSv</td>
<td>50 yo M smoker: 15.8%</td>
</tr>
<tr>
<td></td>
<td>• Baseline screening low-dose chest CT:</td>
</tr>
<tr>
<td></td>
<td>Fairly low risk for radiation induced lung cancer: < 0.06%</td>
</tr>
<tr>
<td></td>
<td>Radiology 2004;321:440-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radiation Risk</th>
<th>Who should be screened ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Radiation-induced lung cancer risk</td>
<td>• No guidelines from US Preventive Services Task Force yet</td>
</tr>
<tr>
<td>• Very low, but not negligible</td>
<td>• NCCN, ALA, ACCP/ASCO published recommendations</td>
</tr>
<tr>
<td>• Estimates extrapolated from unrelated radiation exposures</td>
<td></td>
</tr>
</tbody>
</table>
Who should be screened?

- NLST cohort is the only group with true evidence of benefit:
 - Age 55-74 years
 - Current or former > 30 pack/yr smoking history
 - If former smokers, quit in last 15 yrs

Where?

- In comprehensive care centers with diagnostic and treatment capabilities similar to those in the NLST