CVD is the number one killer

- Leading cause of death in men and women
- Hyperlipidemia is a major modifiable risk factor for CVD
- Discussion today will include recommendations from ATP III (2004 update), the AHA/ACC guidelines on primary and secondary prevention and the Expert Panel of Lipid specialists consensus statement on advanced lipoprotein testing, convened by the National Lipid Association

Lipids - Definition

- Lipids are organic compounds (include fats, oils, sterols, triglycerides)
- Principal structure of living things (along with proteins and carbohydrates)
- Essential to the body’s function
- Transport system evolved to allow delivery of lipids to the organs that need them

Lipid Management

Kavita Sharma, MD
Diplomate, American Board of Clinical Lipidology
Clinical Director, Lipid Clinics
Assistant Professor
Division of Cardiovascular Medicine
The Ohio State University Wexner Medical Center

- LDL
 - Primary carriers of cholesterol
 - Provide it to the body
- HDL
 - Carries cholesterol back to the liver
- VLDL and chylomicrons - lipids that are triglyceride rich
- Non-HDL is Total cholesterol – HDL
- Non-HDL also reflects cholesterol that is atherogenic
Overnutrition

- With overnutrition, lipids can become harmful
- Lipids (in particular LDL and chylomicron remnants) become “stuck” to the subendothelium of the vasculature
- Forms a “fatty streak,” the first step in the development of atherosclerosis

Risk Assessment

- ATP III- fasting lipid profiles
- Step-wise approach

Step 1

- Identify patients with clinical atherosclerosis
 - Clinical coronary artery disease
 - Peripheral arterial disease
 - Symptomatic carotid artery disease
 - Abdominal aortic aneurysm

Step 2

- Determine the presence of major risk factors
 - Smoking
 - Hypertension
 - Low HDL
 - Age (men > 45 years, women > 55 years)
 - Family history of premature coronary artery disease (males ≤ 55 years, females ≤ 65)
Step 3

• Assess 10 year risk in patients without coronary artery disease or an equivalent
• Framingham score- three levels
 – > 20% = coronary equivalent
 – 10% - 20%
 – < 10%

Other Risk Assessments

• Reynolds Risk Score
 – Gender, age, family history, blood pressure, smoking, HDL, hs-CRP
• PROCAM
 – Gender, age, family history, blood pressure, glucose > 120, weight, height and hypertension meds

Step 4

• Identify metabolic syndrome
 – Abdominal obesity
 – Elevated triglycerides
 – Low HDL
 – Elevated blood pressure
 – Elevated fasting glucose

Step 5: NCEP ATP III - LDL-C goals

<table>
<thead>
<tr>
<th>Risk Category</th>
<th>Risk Factors</th>
<th>10 year CHD-risk</th>
<th>LDL-C Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very High-Risk</td>
<td>CHD or CHD RE + RF</td>
<td>>20%</td>
<td><70mg/dL</td>
</tr>
<tr>
<td>High-Risk</td>
<td>CHD or CHD RE</td>
<td>>20%</td>
<td><100mg/dL</td>
</tr>
<tr>
<td>Moderately-high risk*</td>
<td>2 + RF</td>
<td>10-20%</td>
<td><100mg/dL</td>
</tr>
<tr>
<td>Moderate risk</td>
<td>2 + RF</td>
<td><10%</td>
<td><130mg/dL</td>
</tr>
<tr>
<td>Low Risk</td>
<td>0-1</td>
<td></td>
<td><160mg/dL</td>
</tr>
</tbody>
</table>
Step 6: ADA/ACC 2008 Consensus Statement

<table>
<thead>
<tr>
<th></th>
<th>LDL</th>
<th>Apo B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest risk patients</td>
<td>< 70</td>
<td>< 80</td>
</tr>
<tr>
<td>- known CHD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- DM with an</td>
<td></td>
<td></td>
</tr>
<tr>
<td>additional CV risk factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Risk patients</td>
<td>< 100</td>
<td>< 90</td>
</tr>
<tr>
<td>- no known CHD or DM but 2 clinical risk factors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- DM but no other major CV risk factors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CV risk factors: smoking, hypertension, family history of premature CHD

Therapeutic Lifestyle Change

- Reduce saturated fat and cholesterol intake
- Plant stanols/sterols (2 g/d), increased viscous (soluble) fiber intake (10-25 g/d)
- Weight reduction
- Physical activity

Prioritize targets

- If TG <500, LDL is primary target
- If TG >500, TG is primary target
- When LDL is at goal and TG 200-500, non-HDL is target

Pharmacologic Therapy

- Statins
- Bile Acid Sequestrants
- Niacin
- Fibric Acid Derivatives
- Ezetimibe
- Omega-3 Fatty Acids
Statins

- **Mechanism of action**
 - Inhibits B-hydroxy beta methyl glutaryl Co A reductase
 - Therefore decreases production of cholesterol
 - Leads to upregulation in LDL receptors that take up LDL out of the blood

- **Statin effects**
 - LDL levels ↓30-60%, TG levels ↓~20%, HDL levels ↑5-15%

- **Side effects:** Myopathy, increased liver enzymes

Muscle and Statin Safety

- **Baseline CK only for high risk pts**
- **Counsel pt to report any muscle symptoms**
- **Do not measure CK if asymptomatic**
- **Check CK in symptomatic pts**
- **Evaluate muscle symptoms or ↑ CK level for other causes**

Relative LDL Lowering of Statins

<table>
<thead>
<tr>
<th></th>
<th>Atorva 40 mg</th>
<th>Fluva 1 mg</th>
<th>Pitava 20 mg</th>
<th>Lovar 20 mg</th>
<th>Prava 10 mg</th>
<th>Rosuv 40 mg</th>
<th>Vytorin 10 mg</th>
<th>Simva 10 mg</th>
<th>% LDL decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 mg</td>
<td>--</td>
<td>40 mg</td>
<td>20 mg</td>
<td>--</td>
<td>20 mg</td>
<td>--</td>
<td>--</td>
<td>10 mg</td>
<td>30%</td>
</tr>
<tr>
<td>20 mg</td>
<td>80 mg</td>
<td>4 mg</td>
<td>80 mg</td>
<td>80 mg</td>
<td>5 mg</td>
<td>10/10 mg</td>
<td>40 mg</td>
<td>41%</td>
<td></td>
</tr>
<tr>
<td>40 mg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10 mg</td>
<td>10/20 mg</td>
<td>80 mg</td>
<td>47%</td>
<td></td>
</tr>
<tr>
<td>80 mg</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>10 mg</td>
<td>10/40 mg</td>
<td>55%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 mg</td>
<td></td>
<td>10/80 mg</td>
<td>40 mg</td>
<td></td>
<td>63%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liver and Statin Safety

- **Check LFTs at baseline and as clinically indicated**
- **Evidence of liver injury**
 - d/c statin, etiology should be sought/refer pt to gastroenterologist/hepatologist
- **Isolated, asymptomatic ↑ LFTs**
 - 1-3 X ULN, no need to d/c statin
 - > 3 X ULN, test should be repeated
- **According to the Expert Liver Panel, pts with chronic liver disease, nonalcoholic fatty liver disease, or NASH may safely receive statin therapy.**

Risk versus Benefit of Statins

- Risks from fatal and non-fatal rhabdomyolysis are ~ 0.3 and 3 per 100,000 person years respectively
- Acute Liver Failure 0.5-1 per 100,000 person years (~ equal to background rate of liver failure in the general population)
- No evidence that statins cause:
 - Acute or chronic kidney damage
 - Peripheral neuropathy
 - Impairment of memory or cognition

Secondary Prevention Statin Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Population</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIRACL</td>
<td>3086 patients with ACS</td>
<td>16% relative risk reduction in death, nonfatal acute MI, cardiac arrest, recurrent symptomatic myocardial ischemia with objective evidence and requiring emergency hospitalization</td>
</tr>
<tr>
<td>4S</td>
<td>4444 men and women with prior MI</td>
<td>30% relative risk reduction in death, 42% reduction in coronary deaths, 37% reduction in revascularization procedures</td>
</tr>
<tr>
<td>CARE</td>
<td>4159 men and women with prior MI</td>
<td>CHD death and nonfatal MI reduced 24%; 26% reduction in CABG; 22% reduction in PTCA</td>
</tr>
</tbody>
</table>

Primary Prevention Statin Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>Population</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOSCOPS</td>
<td>High-risk men</td>
<td>31% reduction in fatal and nonfatal MI; 32% reduction from all CV causes; 22% reduction in all-cause mortality</td>
</tr>
<tr>
<td>AFCAPS/TexCAPS</td>
<td>6605 men and women</td>
<td>36% reduction in first coronary event; 26% reduction in fatal and nonfatal MI; 33% reduction in revascularization (CABG, PTCA)</td>
</tr>
<tr>
<td>CARDS</td>
<td>2638 Type 2 diabetic patients without known CHD</td>
<td>Cardiovascular events were reduced by 37%</td>
</tr>
</tbody>
</table>
ASCOT-LLA
10, 305 increased risk patients
Intervention: Atorva 10
34% reduction in nonfatal MI and fatal CHD
21% reduction in total cardiovascular events
27% reduction in fatal and nonfatal stroke

JUPITER
17, 802 men and women with LDL < 130 and CRP > 2
Intervention: Rosuva 20
Primary endpoint of a first major CV event reduced by 44%
Mortality reduced by 20%.

Nicotinic acid
- Decrease LDL 5-25%
- Raise HDL 15-35%
- Decrease TG by 20-25%
- Side effects: Flushing, hyperglycemia, hepatotoxicity

Bile acid sequestrants
- Colesevelam, cholestyramine, and colestipol
- Decrease LDL 15-30%
- Raise HDL 3-5%
- No change or increase in TG
- Side effects: GI distress, constipation, decreased absorption of other drugs
- Contraindicated in hypertriglyceridemia

Fibric acids
- Decrease LDL 5-20% (may increase LDL in patients with high TG)
- Raise HDL 10-20%
- Decrease TG 20-50%
- Side effects: GI distress
Ezetimibe

- Cholesterol absorption inhibitor
- Decreases LDL by 18%
- Increases HDL by 1%
- Decreases TG by 2%
- Additive to statins

Outcome Data on Non-statins

<table>
<thead>
<tr>
<th>Drug</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholestryamine</td>
<td>• Effective in primary prevention (Lipid Research Clinics 1984) and secondary prevention in men (Watts 1992)</td>
</tr>
<tr>
<td>Colestipol</td>
<td>• Significantly reduces cardiovascular events compared to placebo (Insull 2006)</td>
</tr>
<tr>
<td>Ezetimibe</td>
<td>• No cardiac outcomes data and ezetimibe did not reduce regression of carotid intima-media thickness (surrogate marker) when added to a statin (Kastelein 2008, Taylor 2009)</td>
</tr>
</tbody>
</table>

Omega-3 Fatty Acids

- **Mechanism of Action**
 - Slows the release of TG rich VLDL into plasma
 - Accelerates clearance of TG rich lipoproteins via enhanced lipolysis

- **Effects**
 - 2000-4000mg of EPA + DHA, TG ↓17-47% (45% if TG >500)
 - Most OTC 1-g fish oil contain 300mg to 500mg of EPA + DHA

- **Side effects**
 - GI (burping/belching, diarrhea), fishy after taste
 - ↑ALT and LDL-C
 - Monitor BS
 - Mildly inhibit platelet fxn at high doses

Fenofibrate

- In type 2 diabetics, did not reduce primary outcome of fatal MI or CHD mortality. Improved secondary outcomes of non-fatal MI and coronary revascularization, a reduction in albuminuria, reduced laser treatments for retinopathy (FIELD 2005)
- Added on to statin, did not lower risk of non-fatal MI, non-fatal stroke, or CV death, more than statin alone in patients with type 2 diabetes at high risk for CV disease. May be a subgroup (high TG, low HDL) that benefits (ACCORD 2010)

Gemfibrozil

- Effective in primary prevention in men (Helsinki Heart Study 1987) and in secondary prevention in men with low HDL (VA-HIT 1999)
Conclusions

- Hyperlipidemia is a major modifiable risk factor
- Risk assessment
- Cholesterol targets
- Pharmacologic therapy

Niacin

- Effective in secondary prevention (Coronary Drug Project 1975)
- Niacin and simvastatin decreased atherosclerosis, coronary death, MI, stroke, or revascularization (HATS 2001)
- Added on to statin, niacin decreased CIMT (ARBITER-2 2004, ARBITER-6 HALTS 2009)
- In patients with stable CVD and LDL < 70, no benefit to addition of niacin to statin therapy (AIM-HIGH 2011)

Omega-3 fatty acids

- Effective in secondary prevention (GISSI-Prevenzione 2002); however, recent meta-analysis did not show that omega-3 fatty acids reduce cardiovascular events or mortality (Rizos 2012)

Future Directions

- PCSK9 inhibitors
- PCSK9 enzyme that degrades the LDL receptor, raising serum LDL levels.
- If PCSK9 is inhibited, LDL levels fall.
- Dramatic drops in LDL in Phase II trials
- Phase III trials underway

Lipid Cases

Melissa J. Snider, PharmD, BCPS
Certified Lipid Specialist, ACCL
Clinical Coordinator
Cardiovascular Risk Reduction and Lipid Clinic
The Ohio State University Wexner Medical Center
Patient Case Outline

- Case #1
 - High TG
 - Drug Interactions
 - Statin Adverse Effects
- Case #2 – Intermediate Risk

Patient Case #1

- Nutrition Assessment reveals
 - No breakfast
 - Sweet tea and fruit throughout the day
 - Few crackers, pop, for lunch
 - Large dinner, including white meat, large portion of white pasta/rice/bread/potatoes

Patient Case #1

- 55 yo male
- PMH: HTN, newly diagnosed DM
- FH/SH/ROS: Non contributory
- Labs:

<table>
<thead>
<tr>
<th>Component</th>
<th>11/15/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOLESTEROL</td>
<td>280</td>
</tr>
<tr>
<td>TRIGLYCERIDES</td>
<td>567 (H)</td>
</tr>
<tr>
<td>HDL CHOLESTEROL</td>
<td>28 (L)</td>
</tr>
<tr>
<td>LDL CHOLESTEROL</td>
<td>---</td>
</tr>
<tr>
<td>NON-HDL CHOLESTEROL</td>
<td>182</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>135</td>
</tr>
<tr>
<td>HbA1c</td>
<td>7.3</td>
</tr>
</tbody>
</table>

- Step 1: Define Risk
 - Diabetes
 - Metabolic Syndrome
- Step 2: Prioritize goals
Step 3: Treatment Considerations
- Secondary causes of dyslipidemia
 - Impaired Fasting Glucose
 - Hypothyroidism
- Therapeutic Lifestyle Changes
- Medication Considerations

Patient Case #1

- Discuss TLC w/ small, quantifiable goals
- Started on gemfibrozil 600mg twice daily
- Returns to clinic in 8 wks with following labs:

<table>
<thead>
<tr>
<th>Component</th>
<th>1/15/2012</th>
<th>11/15/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOLESTEROL</td>
<td>240</td>
<td>280</td>
</tr>
<tr>
<td>TRIGLYCERIDES</td>
<td>350 (H)</td>
<td>567 (H)</td>
</tr>
<tr>
<td>HDL CHOLESTEROL</td>
<td>31 (L)</td>
<td>28 (L)</td>
</tr>
<tr>
<td>LDL CHOLESTEROL</td>
<td>139 (H)</td>
<td>----</td>
</tr>
<tr>
<td>NON-HDL CHOLESTEROL</td>
<td>209</td>
<td>182</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>132</td>
<td>135</td>
</tr>
<tr>
<td>HbA1c</td>
<td>7.1</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Combination Therapy
- Compelling Indications
- Cost
- Drug Interactions
Statins and Drug Interactions

- Risk of myopathy ↑ when statins are coadministered with medications that inhibit their metabolism
- Choosing a noninteracting medication or switching to a non-interacting statin may be the safest option

Statins and Drug Interactions

- Focus on Simvastatin

<table>
<thead>
<tr>
<th>Contraindicated with simvastatin:</th>
<th>Itraconazole, Ketoconazole, Posaconazole, Erythromycin, Clarithromycin, Telithromycin, HIV protease inhibitors, Nefazodone, Gemfibrozil, Cyclosporine, Danazol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not exceed 10mg daily of simvastatin with:</td>
<td>Verapamil, Diltiazem</td>
</tr>
<tr>
<td>Do not exceed 20mg daily of simvastatin with:</td>
<td>Amiodarone, Alodipine (New), Ranolazine (New)</td>
</tr>
<tr>
<td>Limit use of simvastatin 80mg daily</td>
<td>Increased risk of muscle damage may exceed benefits, and safer alternatives are available</td>
</tr>
</tbody>
</table>

Patient Case #1

- Returns to clinic in 8 wks, labs below
- Pt complains of constant myalgias bilaterally and difficulty standing up from the seated position

<table>
<thead>
<tr>
<th>Component</th>
<th>3/15/2012</th>
<th>1/15/2012</th>
<th>11/15/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOLESTEROL</td>
<td>199</td>
<td>240</td>
<td>280</td>
</tr>
<tr>
<td>TRIGLYCERIDES</td>
<td>249 (H)</td>
<td>350 (H)</td>
<td>567 (H)</td>
</tr>
<tr>
<td>HDL CHOLESTEROL</td>
<td>34 (L)</td>
<td>31 (L)</td>
<td>28 (L)</td>
</tr>
<tr>
<td>LDL CHOLESTEROL</td>
<td>115 (H)</td>
<td>139 (H)</td>
<td>----</td>
</tr>
<tr>
<td>NON-HDL CHOLESTEROL</td>
<td>165</td>
<td>209</td>
<td>182</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>120</td>
<td>132</td>
<td>135</td>
</tr>
<tr>
<td>HbA1c</td>
<td>7.0</td>
<td>7.1</td>
<td>7.3</td>
</tr>
</tbody>
</table>
Patient Case #1

Statin-related muscle effects occur in the significant minority of pts, mostly myalgias with normal CK

- **Myalgia management**
 - Re-challenge/Reduce statin
 - Try different statin
 - Ultra-low dose statin and/or Hydrophilic statin
 - Assess 25-OH Vitamin D
 - Consider replacement if low
 - Consider non-statin or combination

<table>
<thead>
<tr>
<th>Component</th>
<th>7/15/12</th>
<th>3/15/12</th>
<th>1/15/12</th>
<th>11/15/11</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOLESTEROL</td>
<td>178</td>
<td>199</td>
<td>240 (H)</td>
<td>280 (H)</td>
</tr>
<tr>
<td>TRIGLYCERIDES</td>
<td>230 (H)</td>
<td>249 (H)</td>
<td>350 (H)</td>
<td>567 (H)</td>
</tr>
<tr>
<td>HDL-C</td>
<td>37 (L)</td>
<td>34 (L)</td>
<td>31 (L)</td>
<td>28 (L)</td>
</tr>
<tr>
<td>LDL CHOLESTEROL</td>
<td>95</td>
<td>115 (H)</td>
<td>139 (H)</td>
<td>---</td>
</tr>
<tr>
<td>NON-HDL</td>
<td>141 (H)</td>
<td>165 (H)</td>
<td>209 (H)</td>
<td>252 (H)</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>140</td>
<td>120</td>
<td>132</td>
<td>135</td>
</tr>
<tr>
<td>HbA1c</td>
<td>7.3</td>
<td>7.0</td>
<td>7.1</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Patient Case #1: Niaspan Education

- Non-HDL still not at target
- Consider add-on therapy
- Options & considerations of each
 - Lovaza
 - BAS
 - Zetia
 - Niaspan – yes!

- Describe as “prickly heat”
 - Head, neck, and shoulders
 - 15-30 min after ingestion of IR, 30-120 after ER, highly variable after SR
- Expect it
 - Reassure it is “normal” and “harmless”
 - Short-lived
- Prevent it
 - Concurrent ASA 81-325mg or ibuprofen 200, 30-60 min before niacin
 - Bedtime snack
 - Whole wheat crackers or skim milk
 - Avoid high-fat meals, alcohol, spicy food
- Rapidly abort flushing with NSAID
 - For example, ibuprofen 200 mg
 - Caution in pts w/ renal or active peptic disease

- Patient was switched to rosuvastatin and was able to titrate up to 20mg daily
- Most recent labs reveal:
Patient Case #1

- Niaspan was added and pt was able to titrate up to 1500mg daily
- Most recent labs reveal all at goal levels:

<table>
<thead>
<tr>
<th>Component</th>
<th>10/15/12</th>
<th>7/15/12</th>
<th>3/15/12</th>
<th>1/15/12</th>
<th>11/15/11</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC</td>
<td>154</td>
<td>178</td>
<td>199</td>
<td>240 (H)</td>
<td>280 (H)</td>
</tr>
<tr>
<td>TG</td>
<td>145</td>
<td>230 (H)</td>
<td>249 (H)</td>
<td>350 (H)</td>
<td>567 (H)</td>
</tr>
<tr>
<td>HDL-C</td>
<td>40</td>
<td>37 (L)</td>
<td>34 (L)</td>
<td>31 (L)</td>
<td>28 (L)</td>
</tr>
<tr>
<td>LDL-C</td>
<td>85</td>
<td>95 (L)</td>
<td>115 (H)</td>
<td>139 (H)</td>
<td>---</td>
</tr>
<tr>
<td>NON-HDL</td>
<td>114</td>
<td>141 (H)</td>
<td>165 (H)</td>
<td>209 (H)</td>
<td>252 (H)</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>112</td>
<td>125</td>
<td>120</td>
<td>132</td>
<td>135</td>
</tr>
<tr>
<td>HbA1c</td>
<td>6.9</td>
<td>7.0</td>
<td>7.0</td>
<td>7.1</td>
<td>7.3</td>
</tr>
</tbody>
</table>

Patient Case #2

- 51 yo male presents to clinic on no meds
- BP 137/85, waist 38”, sedentary, father with MI at age 53
- Laboratory values

Step 1: Define Risk

- Risk Factors that modify LDL-C goal = 2
- Framingham 10-year risk score = 6%
- Metabolic Syndrome
- ATP III & Update recommend LDL-C target <130mg/dL and non-HDL target of <160mg/dL

In pt with intermediate risk, esp with positive family history, are we doing enough??
Patient Case #2

Step 1: Define risk (cont)
- LDL-P or ApoB
 - Direct measure of atherogenic particles
 - Measures residual risk
 - Useful in positive family history
 - Useful in intermediate risk
 - Framingham 5-20%

When LDL-P is discordant, consideration should be given to intensifying LDL-C lowering therapy
- Discordance expected in:
 - Hypertriglyceridemia
 - Abdominal obesity
 - Metabolic Syndrome
 - Insulin resistance
 - Low HDL

Patient Case #2

- LDL-C & LDL-P discordance

For this patient, NMR reveals:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOLESTEROL</td>
<td>190</td>
</tr>
<tr>
<td>TRIGLYCERIDES</td>
<td>175</td>
</tr>
<tr>
<td>HDL CHOLESTEROL</td>
<td>40</td>
</tr>
<tr>
<td>LDL CHOLESTEROL</td>
<td>115</td>
</tr>
<tr>
<td>NON-HDL CHOLESTEROL</td>
<td>150</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>110</td>
</tr>
<tr>
<td>Total LDL-P</td>
<td>1527</td>
</tr>
</tbody>
</table>
Patient Case #2

Step 1: Define risk (cont)
- Intermediate Risk
 - Consider other advanced testing
 - Lp(a)
 - Crp-hs
 - Consider imaging
 - CIMT
 - Coronary Calcium Scoring

Step 2: Prioritize / Set goals
- At least LDL-C <130mg/dL
- Consider LDL-C <100mg/dL
- Consider target LDL-P/ApoB <1000/<80

Step 3: Treatment Considerations
- Medication
 - Statins, Zetia, and BAS tend to lower LDL-C more
 - Niacin and Fibrates tend to lower LDL-P more
- Combination therapy may be necessary

Therapeutic Lifestyle Changes
- 10 week follow-up laboratory values

<table>
<thead>
<tr>
<th>Component</th>
<th>2/15/2012</th>
<th>11/15/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOLESTEROL</td>
<td>167</td>
<td>190</td>
</tr>
<tr>
<td>TRIGLYCERIDES</td>
<td>148</td>
<td>175</td>
</tr>
<tr>
<td>HDL CHOLESTEROL</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>LDL CHOLESTEROL</td>
<td>97</td>
<td>115</td>
</tr>
<tr>
<td>NON-HDL CHOLESTEROL</td>
<td>127</td>
<td>150</td>
</tr>
<tr>
<td>GLUCOSE</td>
<td>105</td>
<td>110</td>
</tr>
<tr>
<td>Total LDL-P</td>
<td>1096</td>
<td>1527</td>
</tr>
</tbody>
</table>
Cardiovascular Risk Reduction and Lipid Clinic

- Cardiovascular event risk reduction
- Medication intolerance
- Management of drug interactions
- Familial hypercholesterolemia
- Hypertriglyceridemia

To make an appointment: 888-293-7677