Gallstone and Bile Duct Disease
The GI Perspective

Jon Walker, MD
Associate Professor – Clinical
Department of Internal Medicine
Division of Gastroenterology, Hepatology & Nutrition
The Ohio State University Wexner Medical Center

Cholelithiasis
Cholelithiasis: Gallstones

- Incidence
 - 10% American adults
- Risk Factors
 - Age
 - Female
 - Obesity
 - Estrogen/OCP/Pregnancy
 - Hyperlipidemia
 - DM
 - Ileal disease/Resection

Cholelithiasis

- Stone
 - 75% cholesterol stones
 - 25% pigment stones
 - Black
 - Brown
- Sludge
Cholelithiasis

- Cholesterol Stones
 - Normal Bile Components
 - Cholesterol
 - Phospholipids
 - Bile salts
 - Bilirubin
 - Proteins
 - Bile salts = keeps cholesterol soluble
 - Micelles of above three components
 - Low bile salts = stone formation
 - High cholesterol concentration = stone formation
Cholesterol Stones

- **Major problem:** supersaturated bile (lithogenic)
 - **Mechanisms**
 - Increased biliary secretion of cholesterol
 - Increased hepatic synthesis of cholesterol
 - Decreased secretion of solubilizing lipids & bile salts

Cholesterol Stones

- Decreased secretion of solubilizing bile salts
 - Decreased hepatic synthesis of bile acids
 - Bile salt malabsorption
 - Biliary stasis
 - Gallbladder dysfunction
 - Impaired enterohepatic bile salt circulation
Cholithiasis: Role of Enterohepatic circulation

Pigment Stones

- Increased bilirubin load presented to the liver
- Primarily unconjugated bilirubin
- Black Stones:
 - associated with hemolysis
 - Direct increase in unconjugated bilirubin
- Brown Stones
 - associated with stagnant or infected bile
 - Indirect via increase β-Glucuronidase
Clinical Presentation

- 20% develop symptoms
- Biliary colic
 - RUQ/Epigastric pain
 - Last over an hour
 - Occ radiates to right shoulder/back
- Dyspepsia
 - Non-specific

Diagnostic Workup

- Abdominal xray
 - 15% stones visualized
 - Pigmented stones usually radiopaque
- RUQ Ultrasound
 - Examines liver and bile duct
 - Calcified and non-calcified stones
 - Limited by small size
- Endoscopic ultrasound
 - No size limitation
 - Closer examination of bile ducts
 - Limited liver examination
Cholelithiasis

Stone Sludge & Stone

www.med-ed.virginia.edu

Treatment

- Surgery
 - Only if symptomatic, unless
 1. Calcified gallbladder
 2. Sickle cell anemia
- Ursodiol not proven effective
- No medications proven effective
- Not clear if avoiding fatty foods reduces symptoms
Choledocholithiasis

- Usually form in the GB and migrate into the duct
- Exceptions
 - Stasis in the duct (stricture/stenosis)
 - Increased bilirubin within the bile (ie chronic hemolytic anemia)
Choledocholithiasis

- Symptoms
 - Asymptomatic
 - Cholangitis
 - Fever
 - Jaundice
 - Pain
 - Hypotension
 - Confusion
 - Abnormal LFT
 - Hyperbilirubinemia
 - Elevated Alkaline Phosphatase
 - +/- Transaminitis

Charcot’s Triad
Reynold’s Pentad

Choledocholithiasis

- Laboratory Findings: Cholestatic Pattern
 - WBC usually elevated
 - Elevated bilirubin (primarily conjugated)
 - Elevated alkaline phosphatase
 - Elevated glutamyl transpeptidase (GGT)
 - Normal to mildly elevated aspartate aminotransferase (AST) and alanine aminotransferase (ALT)
Choledocholithiasis

- Imaging
 - Primary diagnostic modality
 - Ultrasonography
 - Cutaneous
 - Endoscopic ultrasound
 - MRI/MRCP
 - Endoscopic Retrograde Cholangiopancreatography (ERCP)
 - Percutaneous Cholangiogram (PTC)

Diagnostic & Therapeutic
ERCP

- Side-viewing endoscope passed through the mouth into the second portion of duodenum.
- Major papilla identified and catheter inserted with injection of contrast.
- Fluoroscopy utilized to visualize the biliary tree.
- Can evaluate for stenosis, filling defects (stones), bile leak.

ERCP

<table>
<thead>
<tr>
<th>Abnormal major papilla</th>
<th>Sphincterotomy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Choledocholithiasis</td>
<td>ERCP</td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
</tr>
<tr>
<td>NORMAL</td>
<td>CHOLEDACHOLITHIASIS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Choledocholithiasis</th>
<th>ERCP – Basket Retrieval</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL</td>
<td>BASKET RETRIEVAL</td>
</tr>
</tbody>
</table>

www.daveproject.org
Choledocholithiasis
Balloons extraction

www.daveproject.org

ERCP

Balloon Assisted Stone Extraction
Post-Stone Extraction
ERCP

- Highly sensitive and specific for stones
 - 90% sensitivity; 98% specificity
- Offers therapeutics in addition to diagnosis
- Complications
 - Pancreatitis (2-10%)
 - Perforation
 - Bleeding
 - Duct disruption

MRCP

- Magnetic Resonance Cholangiopancreatography
- MRI visualization of the bile duct and pancreatic duct
- T2 weighted imaging – water content
- High Sensitivity and Specificity for stones
- Visualization of abdominal anatomy: pancreas, liver, etc.
MRCP

- Romagnuolo et al Ann Int Med 2003
 - Meta-analysis
 - 92% sensitivity for stones
 - 88% sensitivity for mass
- **Drawbacks**
 - Decreased sensitivity for small stones with normal duct size
 - Unable to sample tissue
 - Poor imaging of ampulla of vater
 - Cloustrophobic patients
 - Metal prostheses or implantable devices
 - Contrast

Endoscopic Ultrasound

- Ultrasound probe at the end of an endoscope
- Maximum depth of penetration: 5-7cm
- Endoscopic ultrasound – minimal barrier between probe and target (i.e. skin, muscle, fat, bowel, peritoneal cavity)
 - advantage over percutaneous U/S
 - Improved resolutions
- Frequency adjustable
 - Low frequency: greater depth of penetration, less resolution
 - High frequency: less depth of penetration, high resolution
- Doppler available on both linear and radial echoendoscopes
 - Vascular assessment
Endoscopic Ultrasound

- Camera
- Light
- Needle Channel
- Ultrasound Probe

Image not available
Normal Pancreas
Body/Tail

EUS
Normal CBD

Stone
Endoscopic Ultrasound
Fine Needle Aspiration

Pancreas Mass
Endoscopic Ultrasound

- **Garrow et al. 2007**
 - Meta-analysis
 - Sensitivity: 89%; Specificity: 94%
- **Tse et al. 2008**
 - Meta-analysis
 - Sensitivity: 94%; Specificity: 95%
- **Safe procedure**
 - Basic endoscopy risks
 - Minimal risk of FNA
- **High accuracy for mass identification and malignant diagnosis (w/ FNA and cytology)**
- **Identification of microlithiasis**
 - Tandon 2001 Am J Gastro
 - Use of EUS able to diagnose etiology in 21 of 31 idiopathic pancreatitis cases
 - 16% with microlithiasis

EUS vs MRCP

- **Both high positive and negative predictive value**
- **Both diagnostic w/o therapeutic benefit**
- **Both safe procedure**
- **EUS better for detection/biopsy of small tumors**
- **EUS better for evaluation for microlithiasis**
- **EUS better for ampullary evaluation (endoscopic and sonographic)**
Recommendations
Cholelithiasis Workup

- High suspicion
 - Abnormal LFT
 - Ductal dilation
 - Acute gallstone pancreatitis
 - ERCP
- Intermediate suspicion
 - EUS
- Low suspicion
 - MRCP

Summary

- Careful history and physical examination can be a pivotal component in diagnosis of gallstone disease
- While cholelithiasis is often easily diagnosed via RUQ ultrasound, choledocholithiasis can be more difficult
- The diagnostic workup and management of choledocholithiasis depends highly on the level of clinical suspicion
- EUS and MRCP are safe and accurate alternatives to ERCP for diagnosis of choledocholithiasis.
- EUS offers added feature of identification and biopsy of small malignant lesions of the distal bile duct, pancreas head or ampulla that are often not identified on MRCP or CT.
- ERCP should be used as initial modality only if pretest probability is high.
Gallstone and Bile Duct Disease

Jeffrey W. Hazey, MD, F.A.C.S.
Associate Professor of Surgery
Center for Minimally Invasive Surgery
Division of General and Gastrointestinal Surgery
The Ohio State University Wexner Medical Center

Common Bile Duct Stones
The Problem

770,000 Cholecystectomies/year
10-15% 77,000-115,000 CBDS
Strategies

Common bile duct stones can be managed/removed…
- Pre-operatively
- Intra-operatively
- Post-operatively
- Procedurally (no operation at all)

Strategies - Endoscopic

- Selective Preop ERCP
 - *Cost-effective if > 80% probability*
- Selective Post-op ERCP
- Intraoperative ERCP
Strategies - Operative

- Open common bile duct exploration
- LSCBDE
 - Transcystic Duct (TCCBDE)
 - LS Choledochotomy (LSCD)

Strategies - Other

Percutaneous transhepatic stenting and removal +/- YAG laser fragmentation or EHL

Laparoscopic assisted transgastric ERCP in post gastric bypass patients
Open Common Bile Duct Exploration

Technical considerations:

Transcholedochal
t-tube
Drainage

Common Bile Duct Stones

T-tube drainage
Common Bile Duct Stones

T-tube drainage: Principles

1. Stenting of sphincter of Oddi
2. Long t-tube tract
3. Elimination of downstream obstruction

Laparoscopic Common Bile Duct Exploration

Technical considerations:

Transcystic
- +/- balloon dilation cystic duct stump
- simple closure of cystic duct

Transcholedochal
- t-tube
- L/S suturing techniques
Laparoscopic Common Bile Duct Exploration

Technical considerations:

Experience in advance L/S techniques

Instrumentation: L/S choledochoscope and supporting instruments

Time

Evaluation of Techniques

• Effectiveness

• Technical Complexity/Experience
 • Cost
CBDS: The Evidence

RANDOMIZED TRIAL LSCBDE vs SELECTIVE POST OP ERCP

CBDS Randomized Trial
LSCBDE vs Postop ERCP

- **Initial Clearance Rates 75%**
- **Final Duct Clearance 100% vs 93%**
- **Morbidity**
 - LSCBDE 7/40 (18%) {3 bile leaks}
 - Postop ERCP 6/40 (15%) {1 bile leak}
- **Hospital Stay**
 - LSCBDE 1 day (1-26)
 - Postop ERCP 3.5 days (1-11)
CBDS Randomized Trial

Criticism

- No prospective calculation of sample size
- Failure to evaluate quality of life and economic impact
- ERCP results poor relative to reported literature (95% success)
- Hospital stay could depend on timing of ERCP
- Results of LSCBDE cannot be generalized

CBDS Survey

8,433 cases in Germany

- Morbidity 14%
- Mortality 0.6%
- Incidence of CDE
 - 1991} 7.4%
 - 1998} 3.8%
- Surgeons prefer Postop ERCP (93%)
- LSCBDE does not play a role in Germany

Huttl, TP et al Zentralbl Chir 2002
CBD Stones Surgeon Experience

Ritchie et al, Ann Surg 1999;230;533-543
- 2434 general surgeons
- # procedures on recertification Application
- Mean # Cholecystectomies/ Yr = 36
- Mean # CBDE/ Yr = 2

Conclusion: Surgeon experience unlikely to support LSCBDE

LSCBDE vs Postop ERCP
A Decision Analysis

Urbach DR et al Surg Endosc 2001 15:4-13

Structure of the Decision Model
Assumptions
Estimation of Probabilities
LSCBDE vs Postop ERCP
A Decision Analysis

<table>
<thead>
<tr>
<th>Patient with Gallstones</th>
<th>LSCBDE and IOC</th>
<th>SUCCESSFUL IOC</th>
<th>UNSUCCESSFUL IOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO CBDS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS CHOLE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transcystic CBDE		COMP	NO COMP
SUCCESSFUL			
UNSUCCESSFUL			

LCS GDE		COMP vs NO COMP	OPEN CBD
SUCCESSFUL			POSTOP ERCP
UNSUCCESSFUL			

COMP vs NO COMP		POSTOP ERCP	
SUCCESSFUL			
UNSUCCESSFUL			

LSCBDE vs Postop ERCP
Assumed Probabilities LSCBDE

IOC Success	94% (80-100)
Sensitivity	89% (80-100)
Specificity	99% (80-100)
Transcystic Success	81% (60-100)
Bile Leak	1.3% (0-5)
LSCBDE Success	67% (40-100)
Bile Leak	2.6% (0-5)
Conversion to Open	56% (0-100)
LSCBDE vs Postop ERCP

Assumed Probabilities ERCP

<table>
<thead>
<tr>
<th>Metric</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOC Success</td>
<td>94% (80-100)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>89% (80-100)</td>
</tr>
<tr>
<td>Specificity</td>
<td>99% (80-100)</td>
</tr>
<tr>
<td>ERCP Success</td>
<td>98% (80-100)</td>
</tr>
<tr>
<td>Severe Complications</td>
<td>1.1% (0-5)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>90% (80-100)</td>
</tr>
<tr>
<td>Specificity</td>
<td>100% (80-100)</td>
</tr>
<tr>
<td>Stone Clearance</td>
<td>91% (80-100)</td>
</tr>
</tbody>
</table>

LSCDBE vs Postop ERCP

Base Case Cost Assumptions

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Cost Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic ERCP</td>
<td>$1441 (500-2000)</td>
</tr>
<tr>
<td>Therapeutic ERCP</td>
<td>$1971 (1000-3000)</td>
</tr>
<tr>
<td>IOC</td>
<td>$368 (250-1000)</td>
</tr>
<tr>
<td>Transcystic CBDE</td>
<td>$1094 (500-2000)</td>
</tr>
<tr>
<td>LSCBDE (“otom”)</td>
<td>$1769 (1000-3000)</td>
</tr>
<tr>
<td>Open Chole (conversion)</td>
<td>$1794 (1000-3000)</td>
</tr>
<tr>
<td>Complication Bile Leak</td>
<td>$1178 (500-3000)</td>
</tr>
<tr>
<td>Complication ERCP</td>
<td>$5478 (2000-20000)</td>
</tr>
</tbody>
</table>
LSCBDE vs Postop ERCP

Incremental Cost vs LS Chole

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSCBDE</td>
<td>$487.50</td>
</tr>
<tr>
<td>Postop ERCP</td>
<td>$550.10</td>
</tr>
</tbody>
</table>

Savings/Cost

LSCBDE (Savings) = $62.60

LSCBDE vs Postop ERCP

Cost-Effectiveness Ratio

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSCBDE</td>
<td>$496.81</td>
</tr>
<tr>
<td>Postop ERCP</td>
<td>$563.59</td>
</tr>
</tbody>
</table>

{Routine Preop ERCP} = 1518.85
CBD Stones

Example: Minimally Invasive Surgery
<table>
<thead>
<tr>
<th>Laparoscopic Common Bile Duct Exploration vs. ERCP: Cost Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-op ERCP > Intra or post-op management of CBDS whether open or L/S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laparoscopic Common Bile Duct Exploration vs. ERCP: Cost Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laparoscopic management of CBDS is the most cost effective</td>
</tr>
</tbody>
</table>
Laparoscopic Common Bile Duct Exploration vs. ERCP: Cost Analysis

Intra-op or Post-op ERCP are the most cost effective when skills or instruments to perform L/S CBDE are not available

Laparoscopic Common Bile Duct Exploration
What is really done out there!

Pre-op ERCP w/ attempts to clear the CBD
Open or L/S CBDE with placement of t-tube if stones remain at cholecystectomy (variable experience)

+/- Post-op ERCP
Laparoscopic Common Bile Duct Exploration

What you should do!

- **ERCP and clearance of duct for “known” CBDS pre-operatively**

- **Attempt to learn advanced laparoscopic techniques in the event an unsuspected CBDS is found at laparoscopic cholecystectomy**

- **Duct clearance (open or L/S techniques) and/or confirmation (IOC) at the time of surgery**

Laparoscopic Common Bile Duct Exploration

What you should do?

- **Little or no role to leave stones in place and reliance on post-op ERCP for removal unless experience dictates otherwise**
Complications …

- Bile leak
- Common bile duct injury
- Retained stones
- Infection/Abscess
- Bleeding

SILS Cholecystectomy
Complications Related Solely to Cholecystectomy…

- Bile leak
 - Common Bile duct, cystic, hepatic or accessory ducts
- Bile duct injuries
 - Complete transection, partial transection
- Bowel injuries
 - Duodenum, colon, small bowel
- Vascular injuries
 - Hepatic arteries, portal vein

Other Issues to Address Related Solely to Cholecystectomy…

- Conversion to Open is NOT considered a complication
- Intra-operative Cholangiography
 - Undiagnosed pathology
 - Cancer, liver disease
Laparoscopic Cholecystectomy...

- Healthy 42 yo female, elective laparoscopic cholecystectomy for symptomatic cholelithiasis
- Re-admitted 3 days post-op with pain and bilirubin of 4.3

Bile Duct Injury: Transection HIDA Scan
Bile Duct Injury: Transection CT Scan

Bile Duct Injury: Transection ERCP
Bile Duct Injury: Transection ERCP

Bile Duct Injury: Transection PTC
Bile Duct Injury: Transection
Intra-Operative

Bile Duct Injury: Transection Intra-Operative Cholangiogram
Bile Leak and/or Injury

Drain it...
Internal and External drainage

- Internal Drainage…
 - ERCP, PTC
- External Drainage…
 - Control of all bile collections

Fix it…
Primary repair vs. reconstruction

- Primary repair with internal/external drainage…
 - T-tube, PTC
- Reconstruction…
 - Roux-en-Y Hepaticojejunostomy*
 - Choledochoduodenostomy
Strategies - Other

Percutaneous transhepatic stenting and removal +/- YAG laser fragmentation or EHL

Laparoscopic assisted transgastric ERCP in post gastric bypass patients

Percutaneous access and removal of CBDS

Percutaneous transhepatic choledochoscopic holmium-YAG laser or EHL ablation of biliary tract calculi is a viable alternative for stone clearance in patients incapable of having their stones removed endoscopically and unable or unwilling to undergo surgery.
Case:

73 yo female, s/p open cholecystectomy with abdominal pain, increased Ift's and ultrasound consistent with choledocholithiasis

Unwilling to undergo an additional operative procedure

ERCP with ES
PTC

Completion cholangiogram after a single treatment
Case:

62 yo male, s/p laparoscopic cholecystectomy with abdominal pain, increased lft’s and ultrasound consistent with choledocholithiasis

Physiologically high risk to undergo an additional operative procedure on presentation

PTC

![Image of PTC](image)
Percutaneous choledochoscopic view

Completion cholangiogram after a single treatment
Laparoscopic assisted transgastric ERCP in post gastric bypass patients