HIV/AIDS

Susan L. Koletar, MD
Division Director, Infectious Diseases
Professor of Internal Medicine
Department of Internal Medicine
The Ohio State University Wexner Medical Center

HIV through the Decades

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifying Virus</td>
<td>Early ARV Development (NRTIs)</td>
<td>Extensive ARV Development (PIs; NNRTIs)</td>
<td>Combination Therapies</td>
</tr>
<tr>
<td>Focus on CD4</td>
<td>Measuring Viral Load</td>
<td>Focus on Viral Load</td>
<td>Once daily Fixed Dose Combinations</td>
</tr>
</tbody>
</table>

“Typical” Course of Untreated HIV Infection

HIV through the Decades

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognition of Syndrome</td>
<td>Opportunistic Infections</td>
<td>Complications of Therapy</td>
<td>Co-Morbidities</td>
</tr>
<tr>
<td>Treatments</td>
<td>Prevention</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Typical” Course of Untreated HIV Infection
90% of new infections in males ages 13-24 were attributable to male-to-male sexual contact.

<table>
<thead>
<tr>
<th>Year</th>
<th>CD4 <200</th>
<th>CD4 200-349</th>
<th>CD4 ≥350</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS deaths</td>
<td>18.0</td>
<td>16.4</td>
<td>14.0</td>
</tr>
<tr>
<td>Non-AIDS deaths</td>
<td>5.5</td>
<td>2.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Contribution of AIDS & Non-AIDS Deaths to Loss in Life Expectancy by Transmission Risk Group

- Female Heterosexual, Male Heterosexual, Male MSM
- Non-AIDS deaths
- AIDS deaths

Note: Data are age- and sex-specific, calculated from a retrospective analysis of cause-of-death data. Analysis included men and women ages 15-64 years who died with an AIDS diagnosis in the United States during 1985-2010. Analysis excluded non-Hispanic white individuals, those with an AIDS diagnosis before 1985, those with an AIDS diagnosis on the day of death, and those with a death certificate delay of more than 1 year.
Cumulative Viral Load Predicts Mortality in ART-Treated Patients

- Estimated cumulative VL (viremia copy-yrs) assessed in 33,563 pts at 17 sites of ART Cohort Collaboration
- After adjusting for age, sex, risk group, BL and time-related VL, and cohort, viremia copy-yrs stratum predicted
 - All-cause mortality
 - AIDS-related mortality

Hazard of All-Cause Mortality by Viremia Copy-Yrs Deciles (Controlling for Cross-sectional VL)

Normalization of CD4/CD8 Ratio and Non-AIDS Events

- 3,236 pts on ART with virologic suppression
 - 7,305 PYFU
 - 458 pts reached CD4/CD8 ≥ 1
- Median time to normalization: 10.1 yrs
- Younger pts, those starting ART in recent yrs, and those with higher CD4+ counts more likely to normalize
- Current CD4/CD8 ratio predicted incidence of clinical progression
- Remained predictive after adjusting for current CD4+ cell count

Time	Probability of CD4/CD8 Normalization (95% CI)
1 yr | 4.4 (3.7-5.2)
2 yrs | 11.5 (10.2-13.0)
5 yrs | 29.4 (26.7-32.4)

Current CD4/CD8 Ratio	Incidence of Clinical Progression* (95% CI)
< 0.30 | 4.8 (3.9-5.9)
0.30-0.45 | 2.4 (1.9-3.1)
> 0.45 | 2.0 (1.7-2.3)

*serious non-AIDS–related events (CV or cancer) or all-cause death

Common Co-morbid Conditions in HIV-infected Persons

- Cardiovascular diseases
- Metabolic complications – lipids/diabetes
- Bone disorders
- Renal
- Liver
- Malignancies
Projecting CVD Risk in HIV: Cumulative Risk by Age and Over a Lifetime

definition of terms

Competing mortality due to HIV-related causes and other non-HIV causes within the HIV-infected population results in lower overall CVD lifetime risk for HIV-infected persons.

Incidence of MI in HIV+ vs HIV- Subjects in Kaiser Cohort

- Retrospective analysis of Kaiser cohort EMRs during 1996-2011 for inpatient MI diagnosis
- HIV-/HIV+ pts matched 10:1
- MI rates in HIV+ and HIV- converged over time
 - 40% increased risk of MI in HIV+ pts overall, but difference no longer observed in most recent yrs

Framingham Risk Score Components, 2010-11

<table>
<thead>
<tr>
<th>Component</th>
<th>HIV+</th>
<th>HIV-</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Framingham score, 10-yr risk of MI, %</td>
<td>9.2</td>
<td>9.6</td>
<td>< .001</td>
</tr>
<tr>
<td>Male, %</td>
<td>60.7</td>
<td>60.4</td>
<td>.42</td>
</tr>
<tr>
<td>Mean age, yrs</td>
<td>47.9</td>
<td>48.5</td>
<td>< .001</td>
</tr>
<tr>
<td>TC > 200 mg/dL, %</td>
<td>30.0</td>
<td>28.6</td>
<td>< .001</td>
</tr>
<tr>
<td>HDL-C < 40 mg/dL, %</td>
<td>38.4</td>
<td>28.2</td>
<td>< .001</td>
</tr>
<tr>
<td>Hx of hypertension, %</td>
<td>28.5</td>
<td>26.2</td>
<td>< .001</td>
</tr>
<tr>
<td>Hx of smoking, %</td>
<td>48.7</td>
<td>34.9</td>
<td>< .001</td>
</tr>
</tbody>
</table>
Incidence of MI in HIV+ vs HIV- Subjects in Kaiser Cohort

<table>
<thead>
<tr>
<th>Framingham Risk Score Components, 2010-11</th>
<th>HIV+</th>
<th>HIV-</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Framingham score, 10-yr risk of MI, %</td>
<td>9.2</td>
<td>9.6</td>
<td>< .001</td>
</tr>
<tr>
<td>Male, %</td>
<td>90.7</td>
<td>90.4</td>
<td>.42</td>
</tr>
<tr>
<td>Mean age, yrs</td>
<td>47.9</td>
<td>48.5</td>
<td>< .001</td>
</tr>
<tr>
<td>TC > 200 mg/dL, %</td>
<td>30.0</td>
<td>39.6</td>
<td>< .001</td>
</tr>
<tr>
<td>HDL-C < 40 mg/dL, %</td>
<td>39.4</td>
<td>26.2</td>
<td>< .001</td>
</tr>
<tr>
<td>Hx of hypertension, %</td>
<td>28.5</td>
<td>26.2</td>
<td>< .001</td>
</tr>
<tr>
<td>Hx of smoking, %</td>
<td>48.7</td>
<td>34.9</td>
<td>< .001</td>
</tr>
</tbody>
</table>

Excess Burden of Cancer Among HIV-Infected Persons

- Estimated cancer rates in HIV
- HIV/AIDS Cancer Match Study
- Expected cancer rates for general population from SEER program (Surveillance, Epidemiology, and End Results)
- Excess = excess/total
- Deficit = deficit/expected

<table>
<thead>
<tr>
<th>Type of Cancer</th>
<th>Expected # of Cancers</th>
<th>Excess or Deficit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHL (1645)</td>
<td>203</td>
<td>87.7</td>
</tr>
<tr>
<td>KS (912)</td>
<td>2</td>
<td>99.8</td>
</tr>
<tr>
<td>Lung (837)</td>
<td>401</td>
<td>52.0</td>
</tr>
<tr>
<td>Anus (764)</td>
<td>20</td>
<td>97.4</td>
</tr>
<tr>
<td>Prostate (574)</td>
<td>969</td>
<td>-40.7</td>
</tr>
<tr>
<td>Liver (389)</td>
<td>106</td>
<td>72.7</td>
</tr>
<tr>
<td>Colorectal (357)</td>
<td>379</td>
<td>-5.8</td>
</tr>
<tr>
<td>Hodgkin’s lymphoma (317)</td>
<td>29</td>
<td>90.0</td>
</tr>
<tr>
<td>Breast (177)</td>
<td>303</td>
<td>-41.6</td>
</tr>
</tbody>
</table>

Robbins et al. 12st CROI Boston 2014 #707

HIV and Cancer-Specific Mortality in the U.S. (1996-2010)

- Retrospective analysis from 5 US Cancer registries (HIV/AIDS Cancer Match Study)
- Cancer specific mortality by HIV status

| Adjusted Hazard Ratios for Cancer-Specific Mortality (HIV Infected vs Uninfected) |
|---|---------------------------------|
| Oral cavity/pharynx | 1.50 (1.07-2.99) |
| Larynx | 1.92 (1.23-2.98) |
| Pancreas | 1.63 (1.26-2.10) |
| Colon and rectum | 1.69 (1.36-2.11) |
| Lung | 1.28 (1.17-1.40) |
| Melanoma | 1.76 (1.10-2.79) |
| Breast | 2.71 (2.10-3.50) |
| Prostate | 1.83 (1.16-2.87) |

Liver, anal, cervical cancers had suggested elevations
Coghill et al 21st CROI, Boston 2014 #99

HIV and the Older Patient

- In the U.S., approximately 30% of HIV-infected persons are ≥50 years of age
- Aging-related comorbidities may complicate management of HIV
- HIV may increase risk of comorbidities and may accelerate the aging process
- Limited data on effects of ARVs in older persons (eg, adverse effects, drug-drug interactions)
HIV and the Older Patient:
HIV Risk, Diagnosis, and Prevention

- Reduced mucosal and immunologic defenses and changes in risk behaviors may lead to increased risk of HIV acquisition and transmission
- HIV screening rates in older persons are low
- Older persons may have more advanced HIV at presentation and ART initiation
 - Screen for HIV per CDC recommendations
 - Sexual history, risk-reduction counseling, screening for STIs (as indicated) are important to general health care for HIV-infected and HIV-uninfected older persons

Recommendations for HIV Testing

- HIV screening is recommended for patients in all health-care settings
 - Patient should be notified that testing will take place unless patient declines (opt-out testing)
- Persons at high risk for HIV should be screened at least annually
- HIV screening should be included in the routine panel of prenatal screening for pregnant women
- Neither separate written consent nor prevention counseling should be required

HIV/AIDS

John Davis, MD, PhD
Associate Dean for Medical Education
Assistant Professor of Clinical Internal Medicine
Department of Internal Medicine
Division of Infectious Diseases
The Ohio State University Wexner Medical Center

Treatment
2014 DHHS Guidelines: When to Start ART

<table>
<thead>
<tr>
<th>Clinical Category</th>
<th>CD4 Cell Count (cells/mm³)</th>
<th>2014 DHHS Guidelines</th>
<th>Strength-Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS-defining illness</td>
<td>Any value</td>
<td>Treat</td>
<td>A-I</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission prev:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Any value</td>
<td>Treat</td>
<td>A-I</td>
</tr>
<tr>
<td>Sexual (heterosexual, other)</td>
<td></td>
<td></td>
<td>(A-I, A-III)</td>
</tr>
</tbody>
</table>

Goals of Treatment
- Decrease in morbidity/mortality
 - Improvement in quality of life
- Virologic suppression
 - VL<400 at 24wks
 - VL<50 (ND) at 48wks
 - Anything else = virologic failure
- Immunologic recovery (reconstitution)
 - Increase in CD4+ number and/or percentage
 - Anything else = immunologic failure
 - Especially decline in CD4+ to <200
- Surveillance for side effects

Current ARV Medications

NRTI
- Abacavir (ABC)
- Didanosine (ddI)
- Emtricitabine (FTC)
- Lamivudine (3TC)
- Stavudine (d4T)
- Tenofovir (TDF)
- Zidovudine (AZT, ZDV)

NNRTI
- Delavirdine (DLV)
- Efavirenz (EFV)
- Etravirine (ETR)
- Nevirapine (NVP)
- Rilpivirine (RPV)

Protease Inhibitor (PI)
- Atazanavir (ATV)
- Darunavir (DRV)
- Fosamprenavir (FPV)
- Indinavir (IDV)
- Lopinavir (LPV)
- Nelfinavir (NFV)
- Ritonavir (RTV)
- Saquinavir (SQV)
- Tipranavir (TPV)

Integrase Inhibitor (II)
- Dolutegravir (DTG)
- Elvitegravir* (EVG)
- Raltegravir (RAL)

Fusion Inhibitor
- Enfuvirtide (ENF, T-20)

CCR5 Antagonist
- Maraviroc (MVC)

* EVG currently available only in coformulation with cobicistat (COBI)/TDF/FTC

Current ARV Medications

Integrase Inhibitor (II)
- Dolutegravir (DTG)
- Elvitegravir* (EVG)
- Raltegravir (RAL)

Fusion Inhibitor
- Enfuvirtide (ENF, T-20)

CCR5 Antagonist
- Maraviroc (MVC)

* EVG currently available only in coformulation with cobicistat (COBI)/TDF/FTC
2014 DHHS Guidelines: Regimens for Treatment-Naïve Patients

Recommended
- EFV
- ATV/r, DRV/r (QD)
- DTG, RAL, EVG/cobi
- DTG + ABC/3TC (1)

[Recommendations for pregnant women differ; see (a)]

For patients with VL<100,000
- EFV + ABC/3TC (1)
- RPV + TDF/FTC (for patients with CD4 > 200)
- ATV/r + ABC/3TC (1)

Alternative Regimens
- DRV/r + ABC/3TC (1)
- LPV/r + (ABC/3TC or TDF/FTC) (1)
- RAL + ABC/3TC (1)

Notes
- 1 – only in patients who are HLA-B*5701 negative
- 2 – 3TC and FTC may be used interchangeably throughout

(a) http://aidsinfo.nih.gov/contentfiles/lvguidelines/perinatalgl.pdf

Advances

- Comparative effectiveness (1)
 - ATV/r vs DRV/r vs RAL (with TDF/FTC)
 - RAL superior, mostly d/t tolerability
- New agents (2)
 - Long-acting, injectable agents
 - Phase IIb, equivalent to TDF/FTC/E芙

Prevention

<table>
<thead>
<tr>
<th>Study</th>
<th>Effect Size, % (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART for prevention; HPTN 052, Africa, Asia, Americas</td>
<td>96 (73-99)</td>
</tr>
<tr>
<td>PrEP for discordant couples; Partners PrEP, Uganda, Kenya</td>
<td>73 (49-85)</td>
</tr>
<tr>
<td>PrEP for heterosexual men and women; TDF2, Botswana</td>
<td>63 (21-84)</td>
</tr>
<tr>
<td>Medical male circumcision; Orange Farm, Rakai, Kisumu</td>
<td>54 (38-66)</td>
</tr>
<tr>
<td>PrEP for MSMs; iPrEx, Americas, Thailand, South Africa</td>
<td>44 (15-63)</td>
</tr>
<tr>
<td>Sexually transmitted diseases treatment; Mwanza, Tanzania</td>
<td>42 (21-58)</td>
</tr>
<tr>
<td>Microbicide; CAPRISA 004, South Africa</td>
<td>39 (6-60)</td>
</tr>
<tr>
<td>HIV vaccine; RV144, Thailand</td>
<td>31 (1-51)</td>
</tr>
</tbody>
</table>

CDC PrEP Recommendations

<table>
<thead>
<tr>
<th>Branding/Advisory</th>
<th>Year</th>
<th>PrEP Provider</th>
<th>Notes</th>
</tr>
</thead>
</table>

Promising Studies

- Adults “cured” of HIV
 - Patient with AML, s/p BMT
 - Remains ND off ART (1)
 - Others s/p BMT → relapse of HIV (2)
- Infants “cured” of HIV
 - One in Mississippi, ND off ART (3)
 - One new infant, ND on ART (4)

2. CROI 2013. Abstract 48LB.
3. CROI 2014. Abstract 144LB
4. CROI 2014. Abstract 75LB

Cure Research

- Failure of PrEP
 - Possibility of reduced seeding of reservoir (1)
- Gene “editing”
 - Removal of co-receptor from CD4 cells by use of a Zn-finger endonuclease (2)

1. CROI 2014. Abstract 397LB.