Common Infections in Primary Care

Michael S. Langan, MD, FACP
Director, Internal Medicine Primary Care Track
Associate Program Director
Internal Medicine Residency
Assistant Professor of Internal Medicine
The Ohio State University Wexner Medical Center

Part 1: Infections of the Respiratory Tract

- Diagnosis and management of:
 - URI
 - Pharyngitis
 - Otitis Media
 - Sinusitis
 - Bronchitis
 - Pneumonia
 - Influenza

CASE 1

- 42 year old female with a “head cold” for 4 days. She has a sore throat and clear rhinorrhea. Over the last 24 hours she developed a hacking cough productive of green sputum.

- This is her third “head cold” this year. She is concerned that she has a “bad immune system”
CASE 1 (cont)

Physical Exam:
- T: Afebrile HR 84 BP 122/76
- HEENT: hyperemic nasal mucosa, OP with mild erythema, TM's clear
- Lungs: CTA B
- The rest of the exam is unremarkable

CASE 1 (cont)

What is the appropriate management?

a) Diagnose bronchitis and prescribe an antibiotic
b) Re-assure and recommend decongestants and first-generation antihistimines
c) Evaluate for an underlying cause of her multiple colds
d) Recommend Echinacea and zinc to reduce the duration of symptoms

URI

Epidemiology

- “Common cold”
- No localizing features
- Average: 2 to 4 per year
- Fall and winter – peak incidence
- 25 million individuals received care (1998)
- 20 million days of work missed (1998)
URI

<table>
<thead>
<tr>
<th>Microbiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinovirus - 50%</td>
</tr>
<tr>
<td>Coronavirus – 18%</td>
</tr>
<tr>
<td>Influenza – 7%</td>
</tr>
<tr>
<td>RSV – 5%</td>
</tr>
<tr>
<td>Parainfluenza</td>
</tr>
<tr>
<td>Adenovirus</td>
</tr>
<tr>
<td>Enterovirus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sore throat</td>
</tr>
<tr>
<td>Sneezing/coughing</td>
</tr>
<tr>
<td>Nasal congestion/discharge – green/yellow</td>
</tr>
<tr>
<td>Headache</td>
</tr>
<tr>
<td>Sinus pressure</td>
</tr>
<tr>
<td>Malaise</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purulent sputum and phlegm are not necessarily associated with bacterial infection...</td>
</tr>
<tr>
<td>Symptoms peak in 3-5 days – may last for 10 days...</td>
</tr>
<tr>
<td>Cough may persist for several weeks...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychological stress</td>
</tr>
<tr>
<td>Poor hand hygiene – fomites</td>
</tr>
<tr>
<td>NOT smoking... or asthma... or COPD...</td>
</tr>
</tbody>
</table>
URI

- Management
 - Oral/nasal decongestants
 - First-generation antihistamines
 - NSAIDs
- …NOT antibiotics
- …No evidence with vitamin C, zinc, Echinacea

Pharyngitis

- Viral causes (90%)
 - Rhinovirus
 - Coronavirus
 - Adenovirus
 - EBV, Coxsackievirus, HSV, HIV
- Suggested by cough, hoarseness, rhinorrhea, conjunctivitis, rash, diarrhea, stomatitis

Pharyngitis

- Bacterial causes (10%)
 - GABHS (Strep pyogenes)
 - Group C and G strep
 - Neisseria gonorrhoeae
 - Corynebacterium diphtheriae
 - Mycoplasma pneumoniae
 - Chlamydia trachomatis
Pharyngitis

• Complications
 • GABHS - ARF (may delay dx up to 9 days)
 • GABHS - post-strep GN
 • GABHS - peritonsillar abscess, lymphadenitis, mastoiditis, sinusitis, otitis media
 • Lemierre’s syndrome - *Fusobacterium necrophorum*

Pharyngitis

• Centor criteria
 • Temperature ≥ 38°C
 • Tonsillar exudate
 • Tender cervical adenopathy
 • No cough or rhinitis

 • 2 or 3 = RSAT; Abx if positive
 • 4 = Abx… or RSAT; Abx if positive

Strep Pharyngitis

• Management
 • Symptomatic: rest, fluids, NSAIDs, salt water gargles, menthol lozenges
 • Antibiotics if Strep: 10 day course
 • PCN
 • Amoxicillin
 • Macrolides
<table>
<thead>
<tr>
<th>Otitis Media</th>
<th>Otitis Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Most frequent diagnosis in sick children visiting PCP</td>
<td></td>
</tr>
<tr>
<td>• 1/3 of antibiotic scripts written for children</td>
<td></td>
</tr>
<tr>
<td>• Persistent middle ear effusion: 10% for up to 3 months</td>
<td></td>
</tr>
<tr>
<td>• Treatment:</td>
<td></td>
</tr>
<tr>
<td>• Analgesics</td>
<td></td>
</tr>
<tr>
<td>• ibuprofen/acetaminophen</td>
<td></td>
</tr>
<tr>
<td>• Benzocaine > 2 years old</td>
<td></td>
</tr>
<tr>
<td>• NOT decongestants or antihistamines</td>
<td></td>
</tr>
<tr>
<td>• Antibiotics???</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Otitis Media</th>
<th>Sinusitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Antibiotics?</td>
<td></td>
</tr>
<tr>
<td>• < 2 years old</td>
<td></td>
</tr>
<tr>
<td>• Bilateral or otorrhea</td>
<td></td>
</tr>
<tr>
<td>• Otherwise, watchful waiting is acceptable</td>
<td></td>
</tr>
<tr>
<td>• Amoxicillin</td>
<td></td>
</tr>
<tr>
<td>• Macrolide if penicillin allergic</td>
<td></td>
</tr>
<tr>
<td>• Epidemiology</td>
<td></td>
</tr>
<tr>
<td>• CT: 87% of URI – maxillary sinus abnormality</td>
<td></td>
</tr>
<tr>
<td>• Bacterial sinusitis < 2% URI</td>
<td></td>
</tr>
<tr>
<td>• Complications occur 1 per 10,000 cases</td>
<td></td>
</tr>
</tbody>
</table>
Sinusitis

- **Symptoms**
 - Nasal congestion
 - Purulent nasal discharge
 - Headache
 - Maxillary tooth pain
 - Facial pain
 - Malaise

- **Symptoms suggestive of bacterial sinusitis**
 - Symptoms > 7 days
 - Maxillary tooth pain
 - Unilateral facial pain
 - Unilateral sinus tenderness
 - Fever
 - Purulent nasal discharge
 - Worsening Sx after initial improvement

Sinusitis

- **Microbiology**
 - Rhinovirus, Coronavirus, Adenovirus, Parainfluenza
 - *Strep pneumo, Haemophilus, Moraxella, Staph aureus*
 - Aspergillus, Mucor, Rhizopus

Sinusitis

- **Treatment**
 - Symptomatic:
 - NSAIDs
 - Antihistamines (1st generation)
 - Corticosteroid nasal spray
 - ? Decongestants and saline nasal spray
 - Antibiotics:
 - Amoxicillin, doxycycline, Bactrim 10 to 14 days
Bronchitis

Epidemiology
- 70% of primary care visits for new onset cough
- 5% of new onset cough - underlying pneumonia

Symptoms
- URI – persistence of cough
- May last for 2 weeks
- Cough – productive vs. non-productive
- Nasal congestion

Treatment
- Beta agonists
- NSAIDs
- Antihistamines (1st generation)
- Decongestants
- ? Cough suppressants

Differential diagnosis
- Pneumonia – fever, tachycardia, tachypnea, evidence of consolidation
- Asthma
- GERD
- Pertussis:
 - Catarrhal phase – URTI
 - Paroxysmal phase – 3 to 6 weeks of cough
 - Convalescent phase – months of cough resolution
Community Acquired Pneumonia

- **Common Pathogens:**
 - *S. pneumoniae*
 - Mycoplasma pneumoniae
 - Chlamydophila pneumonia
 - Respiratory viruses
 - Legionella and Haemophilus…

Community Acquired Pneumonia

- **Risk Factors for drug resistant S. pneumoniae:**
 - >65 years old
 - Abx within the last 3-6 months
 - Alcoholism
 - Medical comorbidities
 - Immunosuppression
 - Child daycare exposure

Community Acquired Pneumonia

- **IDSA/ATS Guidelines to empiric outpatient treatment of CAP:**
 1. Healthy and no Abx history:
 - Macrolide OR Doxycycline
 2. Comorbidities or Abx history:
 - Fluoroquinolone OR Beta-lactam + macrolide
 3. Regions with known resistance:
 - See above

Community Acquired Pneumonia

- **Outpatient vs. Inpatient?**
- **Risk stratification tools:**
 - Pneumonia Severity Index (PSI)
 - CURB-65
PSI

PSI Derivation and Validation Data

<table>
<thead>
<tr>
<th>PSI Derivation and Validation Data</th>
<th>PORT Validation Study (1991) Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Derivation Cohort/Validation Cohort</td>
</tr>
<tr>
<td>Risk Class</td>
<td>No. of pts</td>
</tr>
<tr>
<td>I (≤9)</td>
<td>3,712</td>
</tr>
<tr>
<td>II (10–49)</td>
<td>2,412</td>
</tr>
<tr>
<td>III (50–99)</td>
<td>1,832</td>
</tr>
<tr>
<td>IV (≥100)</td>
<td>847</td>
</tr>
<tr>
<td>Total</td>
<td>8,215</td>
</tr>
</tbody>
</table>

*Note: % Died refers to 30-day mortality.

CURB-65

Score:
- 0-1: Outpatient
- 2: Hospital
- >3: ICU assessment

CURB55

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confusion</td>
<td>1</td>
</tr>
<tr>
<td>Urea>7mmol/l</td>
<td>1</td>
</tr>
<tr>
<td>Respiratory rate>30</td>
<td>1</td>
</tr>
<tr>
<td>SBP<90mmHg, DBP<60mmHg</td>
<td>1</td>
</tr>
<tr>
<td>Age=65</td>
<td>1</td>
</tr>
</tbody>
</table>

SBP= Systolic Blood Pressure, DBP= Diastolic Blood Pressure
Influenza

- Epidemiology
 - 20% of population affected each season
 - 50,000 annual deaths in the U.S.
 - Aerosolized secretions – spread
 - Glycoproteins – hemagglutinin & neuraminidase
 - Antigenic drift – small mutations of HA/NA
 - Antigenic shift – gene reassortment... pandemics

- Symptoms: abrupt onset
 - Fever
 - Myalgias
 - Malaise
 - Non-productive cough and sore throat
 - Delirium
 - Rash

- Examination
 - Flushed face
 - Hyperemic mucosal membranes
 - Tender lymphadenopathy
 - Clear nasal discharge
 - Rales/rhonchi (<20%)

- Diagnosis
 - October to April
 - Nasopharyngeal aspirate
 - Rapid immunologic test (viral antigen)
 - Viral culture – 5 to 7 days
Influenza

- **EBV**
 - Fever, sore throat, lymphadenopathy
 - Splenomegaly, hepatitis, atypical lymphs, Heterophile antibody testing
- **Acute HIV seroconversion**
 - Fever, fatigue, maculopapular rash, LAD, pharyngitis
 - HIV RNA viral load and ELISA for HIV Ab’s
- **URTI**

Influenza

- **Treatment:** within 24 hours... 48 hours...
 - Amantidine and rimantadine
 - Ion channel
 - Influenza A
 - Resistance
 - Zanamivir (inhaled) and oseltamivir
 - Neuraminidase inhibitor
 - Influenza A and B

Influenza

- **Prevention**
 - Vaccination
 - Chemoprophylaxis
 - During week of peak activity
 - ECF’s
 - Immune deficiency
 - Late vaccination

Influenza

- **Complications**
 - Secondary bacterial pneumonia
 - Pneumococcus, Haemophilus, Staph
 - Cardiovascular mortality
Part 2: Other Common Infections

References

References

Common Infections in Primary Care

Allison Macerollo, MD
Assistant Professor-Clinical
Medical Student Education Co-Director
Department of Family Medicine
The Ohio State University Wexner Medical Center
Case #1

• 63 year old female with diabetes with long standing history of lower extremity swelling and faint redness who presents with increased redness of right leg with some increase in warmth. She does feel a little more tired and her blood glucose is in the 160’s which is not normal for her.
• What should you do next?

Cellulitis and Abscesses

• In all, 14.2 million Americans visited primary care physicians, hospital outpatient departments, and emergency services with skin and soft tissue infections in 2005.

• Both erysipelas and cellulitis are manifested clinically by rapidly spreading areas of edema, redness, and heat, sometimes accompanied by lymphangitis and inflammation of the regional lymph nodes.

• Cutaneous abscesses are collections of pus within the dermis and deeper skin tissues. They are usually painful, tender, and fluctuant red nodules, often surmounted by a pustule and surrounded by a rim of erythematous swelling.

Pathogens and Risk Factors for Cellulitis

• A prospective study demonstrated that the majority of S. aureus infections in the US are now methicillin resistant: among 389 blood culture isolates of S. aureus, 63% (244) were CA-MRSA.
• In OSU about half of isolates at UH and about 2/3 of isolates at UHE were MRSA.
• General systemic risk factors include venous insufficiency, regarded to be the most frequent; lymphoedema, peripheral vascular disease; diabetes mellitus; and obesity.
• Local factors include tinea pedis, ulcers, trauma, and insect bites.

Cox NH, Calver GB, Paterson WD. Management and morbidity of cellulitis of the leg. JR Soc Med 1998;91:634
Additional testing in cellulitis

- Blood cultures are positive in low percentage even in hospitalized patients
- Ultrasound is beneficial to rule out DVT or deep abscess.

Treatment of Cellulitis

- General measures include rest, elevation of any affected limbs, and analgesia. The area of cellulitis should be clearly marked and reviewed daily for progression or regression to assess the efficacy of the antibiotic regimen.
- Duration of therapy is about 7 days, depending on the clinical response.

Antibiotics in Cellulitis

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Dosage</th>
<th>Duration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linezolid</td>
<td>A: 600 mg twice per day oral C: 10 mg/kg every 12 h po</td>
<td></td>
<td>Bacteriostatic; No Cross-resistance, expensive</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>A: 300–450 mg 3 times per day po C: 10–20 mg/kg/day in 3 divided doses po</td>
<td></td>
<td>Potential of cross-resistance and emergence of resistance in erythromycin-resistant strains; inducible resistance in MRSA</td>
</tr>
<tr>
<td>Doxycycline, minocycline</td>
<td>A: 100 mg twice per day po C: Not recommended for persons aged <8 years old</td>
<td></td>
<td>Bacteriostatic, limited recent clinical experience</td>
</tr>
<tr>
<td>TMP - SMZ</td>
<td>A: 1 or 2 double-strength tablets twice per day po C: 8–12 mg/kg/day (based on the trimethoprim component) in 2 divided doses po</td>
<td></td>
<td>Bactericidal; limited published efficacy data</td>
</tr>
</tbody>
</table>
Cellulitis and Bites

• The rate of infection of bite wounds differs between the animal species due to the oral flora in the biting animal and injury type.
• Infecting organisms most commonly arise from the mouth of the biting animal; however, they can also arise from the host’s own flora or the environment.
• Animal bite infections should be considered to be polymicrobial.
• Prophylaxis—
 – C: 25-45 mg amoxicillin/kg/day/clavulanate in divided doses twice daily using the 200 mg/5 mL or 400 mg/5 mL oral suspension
 – A: 875 mg amoxicillin sulbactam every 12 hours

Management of mammalian bites Claire Dendle David LookeAustralian Family Physician Vol. 38, No. 11, November 2009

Case #1 Follow Up

• Our patient had a doppler done on day #1 which was negative. She was treated as an outpatient with Clindamycin.
• Seen at day #2 to observe skin markings and redness was decreasing. She completed 6 days of antibiotics total.
• She has been wearing compression stockings faithfully and has had no recurrence.

Case #2

• 35 year old non pregnant married woman with 2 day history of burning and frequency of urination. She requests medication for UTI over the phone. She denies vaginal discharge, fever, chills, back pain, nausea. This is her second call in a year for similar. What should you do?

UTI – Incidence and Risk Factors Adults

• Very common with 8.6 million adult visits per year (84% women);

UTI – Incidence and Risk Factors Adults

- Risk factors 2,3,4,5
 - sexual intercourse
 - use of spermicides
 - previous urinary tract infection
 - a new sex partner (within the past year)
 - a history of urinary tract infection in a first-degree female relative

UTI – Adult Classification

- Acute Uncomplicated Cystitis
 - Non pregnant, healthy female,
 - Complicated UTI
 - Pregnancy, stone, Male, Neurogenic
 - Bladder including catheter use, immunosuppression

UTI – Adult Diagnosis

- If a woman has any symptoms of UTI the probability of cystitis is greater than 50% and chances are greater than 90% in women who have dysuria and frequency without vaginal discharge or irritation.

UTI – Adult Diagnosis

- The dipstick test is most accurate for predicting UTI when the presence of either leukocyte esterase or nitrite is considered a positive result, with a sensitivity of 75% and a specificity of 82%. However, results of the dipstick test provide little useful information when the history is strongly suggestive of urinary tract infection, since even negative results for both tests do not reliably rule out the infection in such cases.

UTI – Bacteria Associated

- E Coli causes 70-95 % of cases
- Remaining from Enterobacteria such as Klebsiella pneumonia
- Gram Positive bacteria - *Staphylococcus saprophyticus, Enterococcus faecalis*, and *Streptococcus agalactiae* (group B streptococcus). However, the latter two organisms, when isolated from voided urine from women with symptoms of uncomplicated cystitis, often represent contamination of the voided specimen

<table>
<thead>
<tr>
<th>Antimicrobial Options</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrofurantoin monohydrate macracrystals, 100 mg twice daily for 5 days</td>
<td>93%</td>
</tr>
<tr>
<td>TMP-SMX, 160 mg and 800 mg twice daily for 3 days</td>
<td>93%</td>
</tr>
<tr>
<td>Fluoroquinolones - ciprofloxacin, 250 mg twice daily for 3 days, levofloxacin, 250 mg or 500 mg once daily for 3 days</td>
<td>90%</td>
</tr>
<tr>
<td>Beta-lactams (e.g., amoxicillin–clavulanate, cefdinir, cefaclor, and cefpodoxime–proxetil) for 3 to 7 days</td>
<td>89%</td>
</tr>
</tbody>
</table>

UTI Prevention in Adults

- Behavioral
 - Recommend abstinence or reduction in frequency of intercourse as sexual intercourse is the strongest risk factor for uncomplicated UTIs – Not feasible for most
 - If spermicides are used, recommend changing to another method for contraception or prevention of infection
 - Recommend that patient urinate soon after intercourse, drink fluids liberally, not routinely delay urination, wipe front to back after defecation, avoid tight-fitting underwear, avoid douching

- Biological
 - Cranberry Juice a recent randomized, placebo-controlled trial showed no benefit from cranberry juice
 - In some postmenopausal women, topical estrogen normalizes the vaginal flora and reduces the risk of recurrent UTIs; oral estrogens are not effective

Antimicrobial Prevention in Adults

<table>
<thead>
<tr>
<th>Antimicrobial Options</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Coital</td>
<td></td>
</tr>
<tr>
<td>Nitrofurantoin, 50–100 mg</td>
<td>In a placebo-controlled trial, the rate of recurrent cystitis with postcoital TMP-SMX, 40 mg and 200 mg, was 0.3 episodes per patient-year, vs. 3.6 with placebo (a 92% reduction)</td>
</tr>
<tr>
<td>TMP-SMX, 40 mg and 200 mg or 80 mg and 400 mg</td>
<td></td>
</tr>
<tr>
<td>TMP, 100 mg</td>
<td></td>
</tr>
<tr>
<td>Cephalexin, 250 mg</td>
<td></td>
</tr>
<tr>
<td>Daily Prophylaxis</td>
<td></td>
</tr>
<tr>
<td>Nitrofurantoin, 50–100 mg</td>
<td>Randomized, placebo-controlled trials have shown a reduction in cystitis recurrences of approximately 95%; a 6-month trial is recommended, then treatment is discontinued and the patient observed</td>
</tr>
<tr>
<td>TMP-SMX, 40 mg and 200 mg</td>
<td></td>
</tr>
<tr>
<td>TMP, 100 mg</td>
<td></td>
</tr>
<tr>
<td>Cephalexin, 125–250 mg</td>
<td></td>
</tr>
</tbody>
</table>

Case #2 Follow Up
- Our young married woman with symptoms of cystitis calling for treatment.
- First-line antimicrobial regimen is prescribed of cipro 250 mg twice daily for three days for now and can consider for future use; patient would be advised to take it at onset of UTI symptoms.
- Note – this treatment is not preventive in any way.

Case #3
- 6 year old first grade female who is developmentally normal presents with complaints of “pain with using potty” for two days. She has never had similar symptoms?
- What should you do?

Case #3 Continued
- General exam shows healthy female, talking easily, able to describe symptoms and no fever or signs of illness.
- GU exam with no signs of trauma, irritation or perineal yeast infection
- UA obtained with mom’s assistance
- No blood, leukocyte positive, nitrite positive
- What should you do now?
UTI Children - presentation

- First item of consideration is you must think of the diagnosis!
- Newborns present with sepsis, failure to thrive, jaundice, nausea
- Infants present with fever, with possible foul smelling urine, hematuria
- Children present with more typical symptoms as adults with dysuria, frequency or urgency

UTI Children Diagnosis

- Young children must have catheterized specimen until reliably toilet trained as bagged specimen are not useful
- Treatment in infants and toddlers should be initiated if child is ill prior to culture and or UA results
- Treatment in children older than three can await results of UA prior to treatment if not clinically ill.
- Nitrates very specific – meaning low false positive rate – if nitrites present, high risk of UTI

UTI Children Treatment

- Amoxicillin well tolerated though resistance increasing
- Trimethoprim/sulfamethoxazole effective
- Amoxicillin/Clavulanate, cefixime, cefpodoxime are effective and well tolerated.
- Avoid fluoroquinolones
- A Cochrane review analyzing short-duration (two to four days) versus standard-duration (seven to 14 days) oral antibiotics in children with lower UTIs found no significant difference in positive urine cultures between the therapies immediately after treatment or 15 months after treatment so short course is most effective and no increase in resistance and improved adherence

UTI Children Prevention

- Several studies show that in children with mild vesicoureteral reflux that prophylaxis is not effective in preventing recurrent infections.
- Constipation should be managed aggressively as this may help reduce repeat infections.

Case #3 Follow up

- Antibiotics started presumptively while awaiting culture based on high sensitivity of nitrite positive.
- Culture revealed e coli with no resistance and her treatment with 4 days of TMP/SMX was effective and patient is symptom free.

Case #4

- 24-year-old single female
- Presents with complaints of a foul smelling, yellow vaginal discharge and slight dysuria for 1 week
- Denies vulvar itching, pelvic pain, or fever
- 2 sex partners during the past year—did not use condoms with these partners—on oral contraceptives for birth control
- No history of sexually transmitted diseases, except for trichomoniasis 1 year ago

Case #4 Continued

- Cooperative, good historian, non ill appearing
- No flank pain on percussion
- Speculum exam reveals a moderate amount of frothy, yellowish, malodorous discharge, without visible cervical mucopus or easily induced cervical bleeding
- Bimanual examination was normal

Vaginitis

- Bacterial Vaginosis (BV)
- Vulvovaginal Candidiasis (VVC)
- Trichomoniasis
Signs and Symptoms of Vaginitis

- **Usually characterized by:**
 - Vaginal discharge
 - Vulvar itching
 - Irritation
 - Odor

- **Common types**
 - Bacterial vaginosis (40%-45%)
 - Vulvovaginal candidiasis (20%-25%)
 - Trichomoniasis (15%-20%)

Diagnostic Options

- **BV – Vaginal Wet Prep, DNA probe, Rapid Antigen Test, culture**
- **Yeast – Vaginal Wet Prep, DNA probe, Rapid Antigen Test, culture**
- **Trichomonas –**
 - Female - Motile trichomonads seen on saline wet mount. Culture is the “gold standard”, Pap smear has limited sensitivity and low specificity, DNA probe, Rapid antigen test
 - Male - 11%-13% of nongonococcal urethritis in males first void urine - examine for motile trichomonads, culture, Urethral swab - Culture

Signs and Symptoms of Vaginitis Table

<table>
<thead>
<tr>
<th>Symptom presentation</th>
<th>Normal</th>
<th>Bacterial/Vaginosis</th>
<th>Candidiasis</th>
<th>Trichomoniasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odor, discharge, itch</td>
<td>Odor, discharge, itch</td>
<td>Itch, discomfort, dysuria, thick discharge</td>
<td>Itch, discharge, 50% asymptomatic</td>
<td></td>
</tr>
<tr>
<td>Homogenous, adherent, thin, milky white, malodorous “fishy”</td>
<td>Thick, clumpy, white “cottage cheese”</td>
<td>Frothy, gray or yellow-green; malodorous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inflammation and erythema</td>
<td>Cervical petechiae “strawberry cervix”</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.8 - 4.2</td>
<td>> 4.5</td>
<td>Usually ≤ 4.5</td>
<td>> 4.5</td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Other-positive</td>
<td></td>
</tr>
<tr>
<td>Lactobacilli</td>
<td>Clue cells (> 20%), no/few WBCs</td>
<td>Few WBCs</td>
<td>Motile flagellated protozoa, many WBCs</td>
<td></td>
</tr>
<tr>
<td>Pseudohyphae or spores if non-albicans species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Seattle STD/HIV Prevention Training Center at the University of Washington
Vaginitis Type	Treatment Options
Bacterial Vaginosis | CDC-recommended regimen: Metronidazole 500 mg orally twice a day for 7 days, gel 0.75%, one full applicator (5 grams) intravaginally, once a day for 5 days, Clindamycin cream 2%, one full applicator (5 grams) intravaginally at bedtime for 7 days
Multiple recurrences: Twice weekly metronidazole gel for 6 months may reduce recurrences

Candidal Vaginosis | Intravaginal agents:
- Clotrimazole 1% cream 5 g intravaginally for 7-14 days
- Miconazole 100 mg vaginal suppository, 1 suppository for 7 days
- Terconazole 0.4% cream 5 g intravaginally for 7 days
- Fluconazole 150 mg oral tablet, 1 tablet in a single dose

Prevention of Vaginitis

- **BV**
 - After multiple occurrences, some consider empiric treatment of male sex partners to see if recurrence rate diminishes, but this approach has not been validated
 - Correct and consistent condom use
 - Avoid douching
 - Limit number of sex partners
- **Candida** - Avoid douching, avoid unnecessary antibiotic use, complete course of treatment
- **Trichomonas** – Partner treatment, Condoms

Case #4 Follow up

- Saline wet mount of vaginal secretions -- numerous motile trichomonads and no clue cells
- KOH wet mount -- negative for budding yeast and hyphae
- Screening for Chlamydia and Gonorrhea are crucial in this case based on age and was negative
- Patient and partner treatment, safe sex and condom use are crucial
Case #5

- 20 Year old sexually active college female student presents for a physical prior to working as a camp counselor for the summer. She has not been to any health screenings for over 2 years since she went to college. She feels well today and has no symptoms.
- What should you screen for regarding sexually transmitted infections?

STI’s – Chlamydia and Gonorrhea

- Discussion today limited to Chlamydia (53,304 cases in Ohio in 2012) and Gonorrhea (16,551 cases 2012) as incidence of other STI’s such as HIV (204 cases 2011), Syphilis (285 cases 2012) and Hepatitis B and C are low in this population.
- Clinical presentation - Most people with GC and Chlamydia are asymptomatic

Screening Chlamydia and Gonorrhea

- Currently, the U.S. Preventive Services Task Force recommends routine screening in all sexually active women 24 years and younger, and in women 25 years and older who are at increased risk because of having multiple partners or a new sex partner.
- Per the CDC, the screening of sexually active young men should be considered in clinical settings with a high prevalence of chlamydia (e.g., adolescent clinics, correctional facilities, sexually transmitted disease clinics), and in certain groups (e.g., men who have sex with men).

Treatment of Chlamydia and Gonorrhea

Uncomplicated Genitourinary Infection of Chlamydia	Azithromycin 1 gm Single Dose OR Doxycycline 100 mg Two Times Daily for Seven Days
Uncomplicated Genital, Rectal, and Pharyngeal Gonorrhea	Ceftriaxone 250 mg as a single intramuscular dose plus azithromycin 1 g orally in a single dose or doxycycline 100 mg orally twice daily for 7 days.
	If unable to use Ceftriaxone- Test of Cure is now recommended

Case #5 Follow Up

- CDC recommends asking The Five P’s: Partners, Prevention of Pregnancy, Protection from STDs, Practices, and Past History of STDs for all of our patients
- Based on age – regardless of risk factors she should be screened for GC and Chlamydia and counseled on safe sex practices

HSV and Zoster

- Herpes simplex virus (HSV) has a worldwide distribution and 90% of adults have antibody to HSV-1 by the fifth decade of life.
- Antibodies against HSV-2 appear in puberty and correlate with sexual activity. The seroprevalence of HSV-2 antibody among patients in the United States is now 20%–25%
- Between 65% and 70% of adult patients are seropositive for VZV, and this identifies those patients at risk for future reactivation infection.

HSV and Zoster

- Treatment HSV and Zoster the same
 - Acyclovir (Zovirax) 800 mg five times daily for seven to 10 days
 - Famciclovir (Famvir) 500 mg three times daily for seven days
 - (Valtrex) 1,000 mg three times daily for seven days

Herpes Zoster and Postherpetic Neuralgia: Prevention and Management

JULIA FASHNER, MD, Saint Joseph Family Medicine Residency Program, South Bend, Indiana
AMANDA L. BELL, MD, Wright State University Boonshoft School of Medicine, Dayton, Ohio

Am Fam Physician. 2011 Jun 15;83(12):1432-1437
Prevention of Herpes-Viruses

- Suppression therapy can reduce shedding and frequency of HSV virus
- Vaccination shown to reduce post herpetic neuralgia in recurrent episodes of zoster

Diarrheal Illnesses

- The cause of diarrhea depends on geographic location, standard of food hygiene, sanitation, water supply, and season.
- No pathogen is identified in more than one half of persons with diarrhea.
- In returning travelers, about 50 percent of episodes are caused by bacteria, such as enterotoxigenic and enteroadherent **E. coli**, **Salmonella**, **Shigella**, **Campylobacter**, **Vibrio**, **Yersinia**, and **Aeromonas** 1
 - 1. Diarrhea in Adults (Acute) GUY DE BRUYN, Chris Hani Baragwanath Hospital, Johannesburg, South Africa AM Fam Physician. 2008 Aug 15;78(4):503-504
 - 2. Gastroenteritis in Children: Principles of Diagnosis and Treatment
 B. CLAIR ELIASON, M.D., Medical College of Wisconsin, Milwaukee, Wisconsin
 RICHARD B. LEWAN, M.D., Waukesha Family Practice Residency Program, Waukesha, Wisconsin

- Most cases of gastroenteritis in this country are self-limited and require minimal intervention. Worldwide and in the United States, oral rehydration solutions such as the World Health Organization solutions and other clear liquids are the cornerstone of treatment 2
- Each year, **C. difficile** infection results in approximately 3 million cases of diarrhea and colitis in the United States. The case mortality rate is approximately 1 to 2.5 percent 3

- 1. Diarrhea in Adults (Acute) GUY DE BRUYN, Chris Hani Baragwanath Hospital, Johannesburg, South Africa AM Fam Physician. 2008 Aug 15;78(4):503-504
- 2. Gastroenteritis in Children: Principles of Diagnosis and Treatment
 B. CLAIR ELIASON, M.D., Medical College of Wisconsin, Milwaukee, Wisconsin
 RICHARD B. LEWAN, M.D., Waukesha Family Practice Residency Program, Waukesha, Wisconsin