Peripheral Artery Disease

Michael R. Go, MD
Assistant Professor
Division of Vascular Diseases and Surgery
Department of Surgery
The Ohio State University Wexner Medical Center

Disclosures

• None

Objectives

• Anatomy
• Pathophysiology
• Demographics
• Diagnosis
• Treatment

Author: Mcstrother CC BY 3.0
Intima

- Luminal surface to IEL
- Endothelial cells
- Few leukocytes, connective tissue fibers, smooth muscle cells

Media

- IEL to EEL and adventitia
- Smooth muscle cells
- Elastin
- Collagen – type III

Elastic Arteries

- Prominent elastic fibers in proximal vessels
- High compliance
- Recoil
- Interspersed with type I collagen bundles
Muscular Arteries
- Smaller distal vessels
- Less collagen and elastin, more smooth muscle cells
- Constrict and dilate more effectively

Adventitia
- Fibrocellular connective tissue
- Vasa vasorum
- Some collagen and elastin
- Normally does not contribute to tensile strength
- In atherosclerosis, a diseased media relies on adventitia for tensile strength

Vasa Vasorum
- Diffusion supports 0.5 mm or 30 musculoelastic bundles
- Vasa vasorum supply the rest

Atherosclerosis
- Most common cause of peripheral arterial occlusive disease
- Preferentially involves the internal carotid, infrarenal aorta, and superficial femoral arteries
- Typically occurs at bifurcations
<table>
<thead>
<tr>
<th>Pathology</th>
<th>Intimal Thickening</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Intimal thickening</td>
<td>• Increased wall tensile stress</td>
</tr>
<tr>
<td>• Fatty streaks</td>
<td>• Increased wall thickness</td>
</tr>
<tr>
<td>• Fibrous plaques</td>
<td>• Occurs at bifurcations and areas of redistribution of wall stress in fetuses</td>
</tr>
<tr>
<td>• Plaque complication</td>
<td>• No lipid accumulation</td>
</tr>
<tr>
<td></td>
<td>• Occurs in same places as plaque, but not necessarily a precursor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fatty Streaks</th>
<th>Fibrous Plaques</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Intimal accumulation of foam cells</td>
<td>• Earliest definitive atherosclerotic lesion</td>
</tr>
<tr>
<td>• Affect all ages</td>
<td>• Appear by second decade</td>
</tr>
<tr>
<td>• Do not compromise lumen</td>
<td>• Subendothelial smooth muscle</td>
</tr>
<tr>
<td>• Abnormal overlying endothelial cells</td>
<td>• Fibrous cap of connective tissue</td>
</tr>
<tr>
<td>• Occurs throughout vascular tree</td>
<td>• Intact but fragile endothelium</td>
</tr>
<tr>
<td>• Not necessarily a precursor of plaque</td>
<td>• Attenuated media</td>
</tr>
</tbody>
</table>
Plaque Complications
- Necrotic core of lipid, macrophages, and smooth muscle cells
- Calcification
- Endothelial disruption
- Ulceration
- Hemorrhage
- Embolism

Pathophysiology
- Atherosclerosis may cause symptoms via:
 - stenosis or occlusion
 - thromboembolism
 - cardiogenic
 - arterioarterial
 - thrombosis of complicated plaque
- Inadequate tissue perfusion

Collateralization
- Collateralization refers to the formation of multiple arterial pathways that develop around a diseased axial vessel
- Resistance is always higher through collaterals than through axial vessels
- Axial vessel occlusions cause more severe symptoms if collaterals are undeveloped, which is why acute axial vessel occlusions may cause more profound ischemia

Important Collateral Pathways
- External carotid
- Internal iliac, lumbar, internal mammary, and epigastric
- Profunda femoris
- Geniculate
Risk Factors

- Tobacco use
- Diabetes
- Hyperlipidemia
- Genetics
- Hypertension

Infrainguinal Arterial Occlusive Disease

- Affects 17% of people over 70
- Asymptomatic
- Claudication
- Critical limb ischemia

Claudication

- Pain in the large muscle groups distal to an arterial lesion after exercise
- Cramping, heaviness, fatigue
- Occurs consistently after a certain distance of walking
- Reliably abates when patient stops
- The patient is asymptomatic at rest because there are adequate collaterals for perfusion without increased metabolic demand

- Affects 5% of the population over 50
- 75% of claudicants will remain stable
- 25% will deteriorate
 - 7 - 9% in first year
 - 2 - 3% per year after first year
- 5% will progress to critical limb ischemia
- 2% will progress to major amputation
Claudication

- 90% have concomitant CAD
- 5 year overall amputation 5%
- 5 year incidence of symptomatic coronary artery disease 23%
- 5 year incidence of stroke 13%
- 5 year mortality 20%
- 10 year mortality 50%
- 15 year mortality 70%

Critical Limb Ischemia

- Ischemic rest pain
 - intense pain across distal foot and arch
 - burning, stabbing, constant
 - worsened with elevation
 - dependent rubor
- Ulceration
- Gangrene
 - dry
 - wet

Critical Limb Ischemia

- 500 – 1000 / 1 million new cases annually
- 1 – 3% of PAD population
- 150,000 amputations per year attributable to CLI

Outcomes of CLI

Fig. A5. Fate of the patients presenting with chronic critical leg ischemia. CLI = critical limb ischemia. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II) Norgren, L. et al. Journal of Vascular Surgery, Volume 45, Issue 1, 85 - 867
Five Year Mortality

![Five Year Mortality Graph]

Diabetic Foot Problems

- Diabetic foot ulcers and amputations cost US health care providers over 10 billion dollars per year

Diabetic Foot Problems

- 24 million diabetic patients in the US
- 90% are type 2
- 15% will require hospitalization for some complication
- 7.8% will account for > 60% of all non-traumatic foot amputations

Diabetic Foot Problems

- Lifetime risk of ulcers or gangrene is 15 - 25%
- > 15% of patients with ulcers will end up with an amputation
- Every 30 seconds a leg is amputated somewhere in the world as a consequence of diabetes
Diabetic Foot Problems
- 85% of amputations in diabetics are preceded by foot ulcerations
- Theoretically, improvement in foot ulcer therapy will decrease limb loss...
- However, no industrialized country has seen a decrease in diabetic limb loss in the modern era of medicine

Diabetic Foot Problems
- Highest incidence in ethnic minority groups
 - Native Americans
 - Hispanics
 - African Americans
- A problem requiring intensive follow up and management is compounded by difficult access to care

Diabetic Foot Problems
- Neuropathy
- Deformity
- Trauma
- Ischemia
- Infection

Neuropathy
- Sensory nerves affected first
- Small diameter pain and temperature fibers are initially damaged
- Predisposes to pressure related trauma and minor skin Injuries
Neuropathy

- Motor neuropathy is late
- Affects both long fibers innervating both intrinsic muscles of the foot and leg muscles

Neuropathy

- Atrophy of intrinsic foot muscles
- Preserved flexor muscle strength results in “clawed position”
- Abnormal pressure points emerge at tips of toes
- Metatarsal heads relax

Neuropathy

- Calluses form which later may ulcerate
- Small muscles of the foot atrophy

Autonomic Neuropathy

- Dry skin
- Loss of sweat and oil gland function
- Dry skin predisposes to fissures
- Calluses and fissures breakdown
- Portals of entry for bacteria
Ischemia

- Neuropathy causes shunting of blood through AV connections in the microcirculation
- Results in decreased tissue perfusion even with normal axial vessels
- Cutaneous oxygen saturation is decreased
- Compounded with neuropathy, ulceration results

Ischemia

- Diabetes causes structural and functional changes in the capillary bed
- Thickened basement membrane
- Impaired migration of leukocytes
- Impaired vasodilation response to injury
- Blunted inflammatory response to injury

Ischemia and Infection

- Because of this blunted inflammatory response, diabetic patients lack a crucial component of the body’s first line defense against pathogens and thus are more susceptible to foot infection

Diabetes and PAD

- Diabetic foot problems, particularly in combination with PAD, are serious
- Even in the absence of axial vessel disease, they can be difficult to heal
<table>
<thead>
<tr>
<th>Differential</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Neurogenic claudication</td>
<td></td>
</tr>
<tr>
<td>– spinal stenosis or nerve root compression</td>
<td></td>
</tr>
<tr>
<td>– history of back pain</td>
<td></td>
</tr>
<tr>
<td>– burning or shooting pain radiating down posterior leg</td>
<td></td>
</tr>
<tr>
<td>– numbness or paresthesias</td>
<td></td>
</tr>
<tr>
<td>• Neuropathy</td>
<td></td>
</tr>
<tr>
<td>• Arthritis</td>
<td></td>
</tr>
<tr>
<td>• Neuropathic ulceration</td>
<td></td>
</tr>
<tr>
<td>• Coronary artery disease</td>
<td></td>
</tr>
<tr>
<td>– MI</td>
<td></td>
</tr>
<tr>
<td>– CHF</td>
<td></td>
</tr>
<tr>
<td>– arrhythmia</td>
<td></td>
</tr>
<tr>
<td>– recent cardiac evaluation</td>
<td></td>
</tr>
<tr>
<td>• DM</td>
<td></td>
</tr>
<tr>
<td>• Smoking</td>
<td></td>
</tr>
<tr>
<td>• Hypertension</td>
<td></td>
</tr>
<tr>
<td>• Hypercholesterolemia</td>
<td></td>
</tr>
<tr>
<td>• Family history of atherosclerotic disease</td>
<td></td>
</tr>
<tr>
<td>• Cerebrovascular disease</td>
<td></td>
</tr>
<tr>
<td>– stroke</td>
<td></td>
</tr>
<tr>
<td>– TIA</td>
<td></td>
</tr>
<tr>
<td>– amaurosis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Exam</th>
<th>Vascular Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Complete heart and lung exam</td>
<td></td>
</tr>
<tr>
<td>• Neurologic exam</td>
<td></td>
</tr>
<tr>
<td>– carotid bruits</td>
<td></td>
</tr>
<tr>
<td>– superficial temporal pulses</td>
<td></td>
</tr>
<tr>
<td>– cranial nerves</td>
<td></td>
</tr>
<tr>
<td>– motor</td>
<td></td>
</tr>
<tr>
<td>– sensory</td>
<td></td>
</tr>
<tr>
<td>• Complete bilateral pulse exam</td>
<td></td>
</tr>
<tr>
<td>– Doppler</td>
<td></td>
</tr>
<tr>
<td>• monophasic</td>
<td></td>
</tr>
<tr>
<td>• multiphasic</td>
<td></td>
</tr>
<tr>
<td>– 0, 1+, 2+, 3+, widened pulses</td>
<td></td>
</tr>
<tr>
<td>– Bruits and thrills</td>
<td></td>
</tr>
</tbody>
</table>
Vascular Exam
- Dependent rubor
- Shiny skin
- Loss of hair
- Diminished nail growth
- Ulceration and gangrene

Vascular Lab Testing
- Segmental pressures and ABI
- Can be affected by vascular calcification or edema

ABI
- Claudication 0.6
- Rest pain 0.3
- Tissue loss 0.2

Exercise Testing
- Treadmill or calf raises decrease peripheral resistance
- Flow increases based on Ohm's law
- If there is a proximal stenosis, flow increase is limited and pressure will drop
Vascular Lab Testing

- Pulse volume recordings
 - normal
 - blunted
- Doppler waveforms
 - multiphasic
 - monophasic
- Digital pressures
- Not limited by vessel calcification
- Complements pressure testing
Angiography

- Diagnostic
- Therapeutic
- Complications
 - nephrotoxicity
 - contrast allergy
 - arterial injury
 - embolization
 - hematoma
 - pseudoaneurysm

Treatment of Claudication

- Risk factor modification
 - smoking cessation
 - hypertension
 - hyperlipidemia
 - diabetes
- Cilostazol
 - rheologic agent
 - increases walking distance
 - contraindicated in CHF
- Supervised exercise program
 - 30 minutes of cardiovascular exercise daily
 - 5 days per week
Treatment of Claudication

- Procedural intervention for claudication is reserved for patients with lifestyle-limiting claudication and failure of medical therapy
- Often, this is related to single level, proximal disease
 - aortoiliac
 - femoral
 - ABI 0.6

Treatment of Rest Pain or Tissue Loss

- Risk factor modification
- Restoration of in-line vascular flow
- Management of the wound
- Often, this is related to multi level or distal disease
 - popliteal
 - tibial
 - ABI 0.3

Peripheral Artery Disease

Mounir J. Haurani, MD
Assistant Professor - Clinical
Division of Vascular Diseases and Surgery
Department of Surgery
The Ohio State University Wexner Medical Center

Open vs. Surgery; Decision Making

- Anatomy
- CLI vs. Claudication
- Overall health of the patient
Percutaneous / Endovascular

- Balloon Angioplasty
- Stents
- Debulking (atherectomy)
Percutaneous Treatment Results Are Better...

- Proximal vessels (aorta > iliacs > SFA > tibials)
- Short lesions
- Focal lesions
- Stenosis > occlusions

Percutaneous Treatments Are Worse...

- Distal or smaller vessels
- Long lesions
- Diffuse lesions
- Occlusions
- At joints or bifurcations
 - common femoral
 - profunda
 - popliteal

Percutaneous Treatments

- Local anesthesia
- Fewer cardiac and pulmonary complications
- Outpatient procedure

Percutaneous Treatments

- Radiation
- Nephrotoxicity
- Arterial injury
- Embolization
- Hematoma
- Pseudoaneurysm
- Rarely as durable as bypass or open repair
Surgery

- Procedural intervention for claudication is reserved for patients with lifestyle-limiting claudication and failure of medical therapy
- Rest pain
- Tissue loss

Surgical Options

- Endarterectomy
- Bypass
 - normal inflow
 - normal outflow

Levels of Disease Determines Options

<table>
<thead>
<tr>
<th>Disease</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortoiliac</td>
<td>- aortoiliac endarterectomy
- aortofemoral bypass
- axillary femoral bypass</td>
</tr>
<tr>
<td>Femoropopliteal</td>
<td>- femoral endarterectomy
- femoropopliteal bypass</td>
</tr>
<tr>
<td>Tibial</td>
<td>- femorotibial bypass
- popliteal tibial or pedal bypass</td>
</tr>
</tbody>
</table>

Contraindications to Surgery

- Prohibitive medical comorbidities
 - coronary
 - pulmonary
- Unreconstructible vessels
- Nonambulatory status (consider primary amputation)
- Extensive tissue loss (consider primary amputation)
Bypass Conduit

- Greater saphenous vein
- Other autogenous vein
 - lesser saphenous
 - cephalic
 - basilic
- Prosthetic (polyester or Polytetrafluoroethylene)

Primary Amputation

Amputation

- Nonambulatory patients with CLI
- Patients with extensive tissue loss
- Unreconstructible patients
 - foot sepsis
 - intractable pain
Level Selection

- Goals of amputation
 - Eliminate infected, necrotic, and painful tissue
 - Wound that heals successfully
 - Residual limb that can accommodate prosthesis

Level Selection; Energy Expenditure

- Unilateral below-knee amputees
 - 10% to 40% increase
 - 50-100% Prosthetic use
- Above-knee amputees
 - 50% to 70% increase
 - 10-30% prosthetic use
- True ambulation rates decrease significantly at 5 years

Level Selection

- Physical findings
 - First step
 - Extent of gangrene and infection dictates
 - Dependent rubor = gangrene
 - Palpable pulse immediately proximal = nearly 100% healing rate
- Clinical judgment
 - 80-90% accurate

Amputation

- Digit
- Transmetatarsal
- Below knee
- Above knee
Amputation

- Overall mortality
 - BKA 30 day: 6% 3 year: 40%
 - AKA 30 day: 13% 3 year: 60%
- 50% of patients will need contralateral amputation in 3 years

Remember to e-mail us your questions.

Our doctors will respond to your emailed questions.