Nutrition for the Hospitalized Patient

Meet Our Patient

• 77 year old male
• s/p left hemicolectomy for colon cancer (stage II)
• 10 lb weight loss before surgery (156 from 166 lb usual body weight. Rehabbing at ECF.
• You admit him to your service on POD 21 for shortness of breath, suspected pneumonia, superficial surgical site infection
• Complains of fatigue, lack of appetite
• Weight now 142 lb (15% weight loss from usual)
• Eating 25-30% of regular trays at ECF

Objectives

• Identify factors that lead to malnutrition in the hospitalized patient
• Describe malnutrition in the hospitalized patient and effect on outcome.
• Determine reliable factors for nutrition assessment.
• Discuss common misconceptions in current practice that may contribute to nutrition problems.
• Describe appropriate options for nutrition interventions.

Nutrition for the Hospitalized Patient

Marcia Nahikian-Nelms, PhD, RDN, CNSC
Professor – Clinical
Department of Internal Medicine
Division of Gastroenterology, Hepatology & Nutrition
Division of Medical Dietetics
The Ohio State University Wexner Medical Center
Malnutrition in our hospitals is not a new problem. C.E. Butterworth, 1979

Contributors to Adult Malnutrition in Acute Care Settings

<table>
<thead>
<tr>
<th>Personal</th>
<th>Organizational</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Lack of recognition</td>
</tr>
<tr>
<td>Dementia/Depression</td>
<td>Lack of screening/assessment</td>
</tr>
<tr>
<td>Disease</td>
<td>Lack of nutrition education</td>
</tr>
<tr>
<td>Overly restrictive therapeutic diet</td>
<td>Confusion re: responsibility</td>
</tr>
<tr>
<td>Inability to chew/swallow</td>
<td>Ht/ Wt not measured/recorded</td>
</tr>
<tr>
<td>Limited mobility</td>
<td>Failure to measure/record food intake</td>
</tr>
<tr>
<td>Sensory loss</td>
<td></td>
</tr>
<tr>
<td>Multiple Medications</td>
<td></td>
</tr>
<tr>
<td>Therapies: vents/drains/NPO, etc.</td>
<td></td>
</tr>
</tbody>
</table>

Presence of Malnutrition and Impact on Outcomes

Physiological Consequences:
- Muscle wasting
- Impaired cardiac function
- Immune hypofunction and dysfunction
- Multi-organ dysfunction
- Impaired wound healing

Nutrition for the Hospitalized Patient

David Evans, MD, FACS
Assistant Professor of Surgery
Department of Surgery
Division of Trauma, Critical Care and Burn
The Ohio State University Wexner Medical Center

Malnutrition in U.S. Hospitals

Data from 2010 Healthcare Cost and Utilization Project (>1000 hospitals)

Malnutrition diagnosis from ICD 9 codes

- 1.2 million discharges w/malnutrition dx
- Longer LOS: 12.6 vs 4.4 days (p<0.0001)
- Higher costs: ~$27,000 vs ~$9,400 (p<0.0001)
- Twice as many discharged with home care
- Death 5 times more common

Corkins MR et al, JPEN 2014

More complications in malnourished patients

N = 100 patients

Impact on Outcomes

- Impaired wound healing
- Increased morbidity/mortality
- Increased muscle/function loss
- Higher infection/complications
- Lower quality of life
- Increased length of stay
- Increased admissions/readmissions
- Higher healthcare costs

Increased risk of post-surgical complications

Pre-existing malnutrition increases risk for post-surgical complications by 2- to 5-times.

Lean Body Mass Loss Correlates with Mortality

<table>
<thead>
<tr>
<th>Lean Body Mass (% loss of lean)</th>
<th>Complications (related to lean loss)</th>
<th>Associated, mortality, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Impaired immunity, increased infection</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>Decreased healing, weakness, infection, thinning of skin</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>Too weak to sit, pressure sores develop, peritonitis, no healing</td>
<td>50</td>
</tr>
<tr>
<td>40</td>
<td>Death, usually from pneumonia</td>
<td>100</td>
</tr>
</tbody>
</table>

*Assuming no pre-existing loss.

Patients with lean body mass loss do not use ingested protein for healing

How do we determine if our patient is at nutrition risk?

- Nutrition assessment - Systematic steps to obtain, verify, and interpret data to identify nutrition related problems, their causes, and significance.
- Nutritional risk – attempt to predict potential nutritional problems based on the client’s current health status

SGA: Subjective Global Assessment
NRS-2002: Nutrition Risk Screening
MUST: Malnutrition Universal Screening Tool
MNA: Mini Nutritional Assessment (elderly)

Nutrition for the Hospitalized Patient

Marcia Nahikian-Nelms, PhD, RDN, CNSC
Professor – Clinical
Department of Internal Medicine
Division of Gastroenterology, Hepatology & Nutrition
Division of Medical Dietetics
The Ohio State University Wexner Medical Center
Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.): Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient. (2009 – currently under revision)

- “Traditional nutrition assessment tools (albumin, prealbumin, and anthropometry) are not validated in critical care.
- Before initiation of feedings, assessment should include evaluation of weight loss and previous nutrient intake prior to admission, level of disease severity, comorbid conditions, and function of the gastrointestinal (GI) tract.”

Plasma protein concentrations most likely are not useful indicators of nutritional status

<table>
<thead>
<tr>
<th>Albumin</th>
<th>Changes with inflammation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prealbumin</td>
<td></td>
</tr>
<tr>
<td>Transferrin</td>
<td></td>
</tr>
<tr>
<td>Retinol binding protein</td>
<td></td>
</tr>
<tr>
<td>C-reactive protein</td>
<td></td>
</tr>
<tr>
<td>Fibronectin</td>
<td></td>
</tr>
</tbody>
</table>

Changes with inflammation

- CRP, lactoferrin, ceruloplasmin
- albumin, prealbumin, transferrin

Historical reliance on these indices continue to be used and appear to have no correlation with patient outcomes.

Nutrition Assessment for Mr. X

- Ht. 5’7” Wt. 142#
- BMI 22.2 (Normal weight = 18.5–24.9)
- Usual Body Weight
 - Preillness - 166#
 - Weight prior to initial surgery – 156#
- 15% weight change
- Classified as a severe weight loss

Time frame	Significant weight loss	Severe weight loss
1 week | 1-2% UBW | >2 % UBW
1 month | 5 % UBW | >5 % UBW
3 months | 7.5 % UBW | >7.5 % UBW
6 months | 10 % UBW | > 10 % UBW

Factors to consider

- Changes in appetite
- Changes in taste
- Presence of nausea, vomiting, diarrhea, constipation
- Ability to chew and swallow
- Previous diets followed at home
- Factors that may impact quality of diet at home

Mr. X

- Prior to surgery, reported decrease in appetite.
- NPO after surgery x 3 days
- Clear Liquids x 2 days
- Discharged to ECF after one meal of regular diet
- Admission from ECF, indicates 25-50% of meals consumed
Proposed new definitions for malnutrition

- Nutrition Risk Identified
 - Inflammation present?
 - No
 - Starvation-related malnutrition
 - Yes
 - Mild to moderate inflammation: Chronic disease-related malnutrition
 - Marked inflammatory response: Acute disease or injury-related malnutrition

Malnutrition criteria

- 1. Insufficient energy intake
- 2. Weight loss
- 3. Loss of muscle mass
- 4. Loss of subcutaneous fat
- 5. Localized or generalized fluid accumulation that may sometimes mask weight loss
- 6. Diminished functional status as measured by handgrip strength or reduction in ADLs

Table: Malnutrition criteria

<table>
<thead>
<tr>
<th>Type of malnutrition</th>
<th>Acute illness or injury-related</th>
<th>Chronic disease-related</th>
<th>Social or environmental cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td><75% of est. energy requirement for >7 days</td>
<td><75% of est. energy requirement for ≥1 month</td>
<td><75% of est. energy requirement for ≥3 months</td>
</tr>
<tr>
<td>Severe</td>
<td>≤50% of est. energy requirement for ≥25 days</td>
<td>≤50% of est. energy requirement for ≥1 month</td>
<td>≤50% of est. energy requirement for ≥1 month</td>
</tr>
</tbody>
</table>

Table: Insufficient energy intake

<table>
<thead>
<tr>
<th>Type of malnutrition</th>
<th>Acute illness or injury-related</th>
<th>Chronic disease-related</th>
<th>Social or environmental cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>1–2 % 1 week 5 7.5 3 months</td>
<td>1 month 7.5 10 6 months</td>
<td>1 year 5 7.5 10 6 months 1 year</td>
</tr>
<tr>
<td>Severe</td>
<td>>2 % 1 week >5 >7.5 3 months</td>
<td>>10 >20 >3 months >6 months</td>
<td>>1 year >5 >7.5 >10 6 months 1 year</td>
</tr>
</tbody>
</table>
Physical assessment….
One look is worth a thousand words

Muscle wasting
Fat wasting
Fluid accumulation

Nutrition for the Hospitalized Patient

David Evans, MD, FACS
Assistant Professor of Surgery
Department of Surgery
Division of Trauma, Critical Care and Burn
The Ohio State University Wexner Medical Center

Nutrition Support

• Modification to prescribed oral diet
• Oral Supplements
• Enteral Nutrition (via feeding tubes)
• Parenteral Nutrition (TPN/PN)

Decision making – Nutrition support for the hospitalized patient

• Which patients need nutrition support?
 – Malnourished
 – Unable to maintain volitional intake (5-7 days for well-nourished, <24 hrs for malnourished)
 – Consider inflammatory state, disease severity, comorbid conditions, and function of the gastrointestinal (GI) tract.
The Old Paradigm

Myth - clear liquid diets should be first

- Randomized trials of patients on clear liquid vs. regular diet after open abdominal surgery—no difference in nausea and vomiting

- 147 patients given tea, water, isotonic drink after removal of NGT - Patients were then fed based on their appetite and preferences. By POD 1, 27% were eating and tolerating solid foods. By POD 2, the number had risen to 81.3% and by POD 3, 97.1% were tolerating solid foods

Patients Know Best – Are “Fast Track” or ERAS* Protocols OK?

- 145 patients who were allowed to eat within 24 hours after colorectal surgery
- POD 1, the most commonly preferred foods and beverages included: toast (80%), fruit juice (75%); broth (73%); fresh fruit (73%); potatoes (73%); egg (70%); coffee/tea (64%); ice cream (64%); crackers (64%); pudding, yogurt and sandwiches (61%). Most of these foods are not part of a clear or full liquid diet. On POD 2 similar foods and beverages as well as cooked vegetables; hot cereal; and casseroles were chosen.

*Enhanced Recovery After Surgery (http://www.erasociety.org)

Early postoperative feeding significantly reduces post-operative complications

Objective

- Evaluate surgical outcomes following early feeding (within 24 hours of surgery)* compared with traditional feeding†

Subjects

- 1,240 patients in 15 studies

Design

- Meta-analysis of randomized controlled trials of patients with GI tract resection

Study Outcomes

- Postoperative complication rates, mortality, tolerance of early feeding, resumption of bowel function, hospital length of stay

Early Postoperative Feeding Significantly Reduces Postoperative Complications

<table>
<thead>
<tr>
<th>Study</th>
<th>Early Pre-2000</th>
<th>Traditional Pre-2000</th>
<th>Early Post-2000</th>
<th>Traditional Post-2000</th>
<th>Subtotal</th>
<th>Pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryan</td>
<td>2 of 7</td>
<td>7 of 7</td>
<td>0 of 14</td>
<td>4 of 14</td>
<td>2 of 18</td>
<td>1 of 21</td>
</tr>
<tr>
<td>Schrander</td>
<td>4 of 16</td>
<td>7 of 16</td>
<td>17 of 93</td>
<td>18 of 95</td>
<td>21 of 109</td>
<td>1 of 21</td>
</tr>
<tr>
<td>Binderine</td>
<td>0 of 32</td>
<td>0 of 32</td>
<td>1 of 29</td>
<td>1 of 29</td>
<td>1 of 31</td>
<td>1 of 21</td>
</tr>
<tr>
<td>Bauer-Holgersen</td>
<td>8 of 30</td>
<td>19 of 30</td>
<td>3 of 27</td>
<td>4 of 27</td>
<td>11 of 57</td>
<td>1 of 21</td>
</tr>
<tr>
<td>Carr</td>
<td>0 of 14</td>
<td>4 of 14</td>
<td>10 of 40</td>
<td>12 of 40</td>
<td>10 of 54</td>
<td>1 of 21</td>
</tr>
<tr>
<td>Ortiz</td>
<td>17 of 93</td>
<td>18 of 95</td>
<td>65 of 320</td>
<td>77 of 312</td>
<td>82 of 337</td>
<td>1 of 21</td>
</tr>
<tr>
<td>Hartnell</td>
<td>1 of 29</td>
<td>1 of 29</td>
<td>1 of 29</td>
<td>1 of 29</td>
<td>1 of 31</td>
<td>1 of 21</td>
</tr>
<tr>
<td>Nessim</td>
<td>3 of 27</td>
<td>4 of 27</td>
<td>3 of 27</td>
<td>4 of 27</td>
<td>6 of 54</td>
<td>1 of 21</td>
</tr>
<tr>
<td>Stewart</td>
<td>10 of 40</td>
<td>12 of 40</td>
<td>11 of 312</td>
<td>12 of 312</td>
<td>22 of 626</td>
<td>1 of 21</td>
</tr>
<tr>
<td>Subtotal</td>
<td>48 of 303</td>
<td>77 of 303</td>
<td>113 of 623</td>
<td>191 of 617</td>
<td>304 of 914</td>
<td>1 of 21</td>
</tr>
<tr>
<td>95% CI</td>
<td>0.53 0.08 3.78</td>
<td>0.03 0.63 0.94</td>
<td>0.22 0.05 1.08</td>
<td>0.75 0.11 2.91</td>
<td>0.55 0.34 0.90</td>
<td>0.55 0.34 0.87</td>
</tr>
</tbody>
</table>

Favor Early Favor Traditional

Myth - Bowel Sounds are Important

- Why do we listen to bowel sounds?
- No evidence supports the clinical importance of bowel sounds
 - Bowel sounds require air / fluid interface
- Bowel sounds should not guide therapy

Myth - Gastric Residuals Matter

- Reignier 2011 Study
 - GRV Used (n=102) No GRVs (103)
 - Intolerance 46.1% 26.2% *
 - Vol EN infused 1381 ml/d 1489 ml/d *
 - Vomiting 24.5% 26.2%
 - VAP pneumonia 19.6% 18.4%
- Reignier 2013 Multicenter Study
 - GRV Used (n=215) No GRVs (208)
 - Intolerance 64.2% 41.8% *
 - Calorie Deficit 518 kcal 314 kcal *
 - Vomiting 26.5% 41.8% *
 - VAP pneumonia 15.8% 16.7%

No change in clinically significant outcomes when you don’t measure residuals

1 Reignier (CC 2011) 2 Reignier (JAMA 2013)

Potential Factors Influencing Toleration of Diet and Enteral Feeding Post-op Setting

- Medications
 - Prokinetic agents
 - Narcotics
 - Sedative agents
 - Pressors
- Tube feeding

Factors influencing bowel sounds:
- Presence or absence of NG tube
- Visceral blood flow
- Ventilator
 - Ventilatory pressures
 - CPAP
A practical approach to GRVs:

- Check residuals every 4-6 hours

- If the GRV is > 250 mL twice, a promotility agent (metoclopramide or erythromycin) should be considered

- Avoid automatic cessation for GRVs less than 500 mL in the absence of other signs of intolerance

Gastric vs. Postpyloric Feeding?

<table>
<thead>
<tr>
<th>Gastric Feeding</th>
<th>Jejunal feeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relatively easy</td>
<td>Shorter time to goal</td>
</tr>
<tr>
<td>Residuals are a problem</td>
<td>Increased nutrient delivery</td>
</tr>
<tr>
<td>Aspiration risks higher</td>
<td>Decreased VAP</td>
</tr>
<tr>
<td>Can be done safely</td>
<td>Access can be difficult</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Journal yr</th>
<th>Study pop</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>JPEN 1992</td>
<td>Gastric v Jejunal n=17</td>
<td>No difference in aspiration</td>
</tr>
<tr>
<td>Montecalvo</td>
<td>CCM 1992</td>
<td>Gastric v Jejunal</td>
<td>Jejunal: Goal faster, Dec pneumonia</td>
</tr>
<tr>
<td>Fortbeck</td>
<td>J Trauma 1999</td>
<td>Gastric v Jejunal n=80</td>
<td>Jejunal: Goal faster</td>
</tr>
<tr>
<td>Koans</td>
<td>CCM 2000</td>
<td>Gastric v Jejunal n=44</td>
<td>Jejunal: Goal faster no change VAP</td>
</tr>
<tr>
<td>Heyland</td>
<td>CCM 2001</td>
<td>Gastric v Jejunal n=33</td>
<td>Gastric more aspiration</td>
</tr>
<tr>
<td>Montejo</td>
<td>CCM 2002</td>
<td>MRPCT</td>
<td>Jejunal: decrease complications</td>
</tr>
<tr>
<td>Neumann</td>
<td>CCM 2002</td>
<td>Prospective descriptive n=60</td>
<td>Gastric: goal faster, No increase aspiration</td>
</tr>
<tr>
<td>Davies</td>
<td>CCM 2002</td>
<td>PRCT n=73</td>
<td>Jejunal better tolerance decrease need for TPN</td>
</tr>
<tr>
<td>Meert</td>
<td>Chest 2004</td>
<td>PRCT n=74 Pediatrics</td>
<td>Jejunal greater goal, no change in aspiration</td>
</tr>
<tr>
<td>Melihany</td>
<td>CCM 2006</td>
<td>Prospective descriptive n=360</td>
<td>Gastric increases aspiration pneumonia</td>
</tr>
<tr>
<td>Hsu CW</td>
<td>CCM 2009</td>
<td>PRCT N=120 Medical ICU</td>
<td>Nasoduodenal goals earlier, less vomiting and less VAP</td>
</tr>
</tbody>
</table>

But does my patient need enteral tube feeds?

What about Oral Nutrition Supplements

Reduced 30-day readmission rates: -8.4 percent reduction for patients with any diagnosis
-10.1 percent reduction for congestive heart failure pts
-12.0 percent reduction for acute myocardial infarction pts

Length of stay reduction: 1.65 days on average

Cost Savings: 15.8 percent or $3,079 in cost savings per hospitalization

Medicare administrative data

But my patient can’t eat and can’t get a tube!

When is Parenteral Nutrition (PN) Indicated?

2009 ASPEN / SCCM Guidelines (Currently Under Revision)

- In the patient who was previously healthy prior to critical illness with no evidence of protein-calorie malnutrition, use of PN should be reserved and initiated only after the first 7 days of hospitalization (if EN is not available)
- If there is evidence of protein-calorie malnutrition on admission and EN is not feasible, it is appropriate to initiate PN as soon as possible following admission and adequate resuscitation.
- If patient malnourished preop, delay surgery, initiate PN 5 to 7 days pre-op, continue into post-op period.
- Initiate PN only if duration of therapy anticipated to be > 7 days (PN therapy for duration < 7 days should have no outcome benefit and may increase risk).

Major Ongoing Questions in Critical Care Nutrition

- Supplemental PN to “Top UP” patients unable to receive full enteral feeding
- “Trophic” vs. Full EN in ICU patients
 - Trophic probably ok in non-surgical patients for first days of ICU stay
- “Immunonutrition” – enteral formulations typically containing supplemental arginine, glutamine, omega-3 (fish oil), antioxidants

Nutrition for the Hospitalized Patient

Marcia Nahikian-Nelms, PhD, RDN, CNSC
Professor – Clinical Department of Internal Medicine Division of Gastroenterology, Hepatology & Nutrition Division of Medical Dietetics The Ohio State University Wexner Medical Center

RD evaluation and therapeutic nutrition options for our patient

- 77 year old male
- s/p left hemicolecotomy for colon cancer (stage II)
- 10 lb weight loss before surgery (156 from 166 lb usual body weight. Rehabbing at ECF.
- You admit him to your service on POD 21 for shortness of breath, suspected pneumonia, superficial surgical site infection
- Complains of fatigue, lack of appetite
- Weight now 142 lb (15% weight loss from usual)
- Eating 25-30% of regular trays at ECF
RD and MD/DO Team Collaboration

- Nutrition Assessment
- Oral Recommendations
- Feeding Tube Placement
- Parenteral Nutrition?

- Discharge and follow-up plans?