Oncologic Emergencies

Luca Delatore, MD
James Emergency Department Medical Director
Associate Professor – Clinical
Department of Emergency Medicine
The Ohio State University Wexner Medical Center

Prevalence of cancer: American Cancer Society

• 13.7 million Americans are living with cancer or history of the disease
• American Cancer Society projects 1.6 million new diagnoses this year
• Cancer is the 2nd leading cause of death in the US (Heart disease #1)
• Cancer accounts for more than 500,000 deaths per year
Prevalence of cancer

New therapies have led to longer survival
- New drugs
- Radiation
- Bone marrow transplants
- Immunotherapy - most recent and area of growth at OSU

Cancer-related ED visits

- Patients with high acuity
- Admission rate of 60-70%
- Often (~5%) a new diagnosis made in the ED
- Frequently the more acute patients with lower survival rates present to the ED
- Also older patients and those with limited healthcare access present to the ED
Cancer-related ED visits

Resisting labels is critical for appropriate treatment
- Cancer does not mean terminal
- Cancer does not assume DNR
- Treatment is indicated
 - Pain
 - Dehydration
 - Vomiting
 - Infection
 - Palliative

Why a specific Emergency Department?
- Provide specialized care in the emergency setting for cancer patients
- Improve access to unique treatment and research opportunities for patients with cancer
- Establish hospital based guidelines for emergency department care
- Evaluation of patient outcome
 - Admissions
 - Inpatient length of stay
 - Infection rates
 - Patient Satisfaction
Classification of Oncologic Emergencies

Can be broken down into 3 main areas
- Structural
- Metabolic/endocrine
- Hematologic

Structural Oncologic Emergencies

- Spinal Cord Compression
- Malignant pericardial effusion
- Brain metastases
- Superior Vena Cava Syndrome
Spinal Cord Compression

- Major emergency requiring radiation treatment
- Most are due to metastatic lesions
- Most common in the thoracic spine (70%) and lumbrosacral (20%)
- Most common early symptom is pain (95%)
- Pain is positional and usually worse when supine
- Occurs in approximately 5% of all cancer patients
- Most common in breast, lung and prostate cancer, renal, lymphoma
- Life threatening if above C3

Spinal Cord Compression - Exam findings

- Tenderness to palpation
- Weakness
- Spasticity
- Abnormal reflexes
- Sensory deficits
 - Good indicator of location of lesion
- Palpable bladder
- Decreased rectal tone
Spinal Cord Compression

- Early recognition is key. Early MRI imaging
- Prognosis is closely related to pretreatment level of function
- Late Signs
 - Autonomic dysfunction
 - Urinary retention
 - Constipation
- Transport for rapid evaluation of emergent radiation therapy and steroids
- Surgery for tissue diagnosis and stabilization
- Treatment delays may result in loss of bowel or bladder function

Malignant pericardial effusion

- Due to neoplastic infiltration or radiation treatment
- Can lead to cardiac tamponade
- Difficult diagnosis to make and often misdiagnosed as CHF, PE or anxiety
- Beat to beat alteration of the QRS
- Symptoms
 - Dyspnea
 - Orthopnea
 - Cough
 - Chest pain
 - Weakness
Malignant pericardial effusion

- **Physical exam findings:**
 - “muffled” heart sounds
 - Increased JVP
 - Decreased systolic blood pressure

- **Echocardiogram (Most Helpful Tool):**
 - Diastolic collapse of RA and RV
 - Dilated IVC

Malignant pericardial effusion

Cardiac tamponade
- Initial treatment is temporizing
 - Oxygen, IVF, vasopressors
- May require pericardiocentesis, pericardial window
- 60% of malignant effusions reaccumulate
- Treat underlying malignancy
Brain Metastases

- Most common form of malignant CNS involvement
- Common associated cancers:
 - Lung (most common)
 - Breast
 - Melanoma
 - Leukemia/lymphoma
- Causes symptoms via compression and edema
 - Headache
 - Seizures
 - Focal weakness
 - Exam may be normal

Brain Metastases

- Diagnosis: Find the primary tumor
- CT scan of the chest, abdomen, and pelvis
- If negative, then consider mammogram or other imaging study
- In 30% of patients no primary tumor is identified
Brain Metastases

- Alleviate Symptoms – ie palliation
- Radiation is the primary treatment for brain metastases
- If single brain lesion, then surgery may be reasonable with or without radiation
- Corticosteroids
 - Especially if signs of edema
- Chemotherapy
- Anti-seizure medications – tend to improve quality of life

Superior Vena Cava Syndrome

- Obstruction of the SVC which carries blood back into the heart
- Approximately 90% caused by cancer
- Lung cancer is the most common (65%)
- Clinical features:
 - Edema of the face and arms
 - Swollen collateral veins on the chest
 - Shortness of breath
 - Coughing
 - Difficulty swallowing
 - Headache
Superior Vena Cava Syndrome

- Lung cancer patients account for 65% of all SVCS cases
 - 3 – 15% of patients with Lung CA
 - Four times more likely in right vs left sided tumors
- Lymphoma - 8%
 - Usually in the anterior mediastinum
- Breast and other mediastinal tumors 10%
- Non-malignant conditions account for remainder

Superior Vena Cava Syndrome

- Supportive care and transport
- Elevate the head of the bed and provide oxygen if hypoxic
- Immediate radiation therapy consultation
- Consider anticoagulation (50% will have clot present)
- Radiation is the definitive treatment
- Surgery and chemotherapy in selected cases
- Intravenous stents, balloon angioplasty and surgical bypass are becoming more common
Oncologic Emergencies

Joseph Flynn, DO, MPH, FACP
Associate Professor – Clinical
Division of Hematology & Oncology
The Ohio State University Wexner Medical Center

Overview

• General Considerations
• Hypercalcemia of malignancy
• Tumor Lysis Syndrome
• Septic Shock
General Considerations

- Oncologic Emergencies Have Increased
- Rapid Recognition Required
- Aggressive Treatment is Indicated
- If due to underlying cancer, then treat the cancer
- Palliation in Advanced Malignancies
 - Must Consider Doing Nothing

Case # 1

- A 60 y/o white female is brought to the ER by her family for new onset worsening confusion
 - The patient notes only vague abdominal pain and constipation
 - PE:
 - HR 115, BP 88/40, RR 10, T 100.2
 - Elderly appearing female
 - Dry mucous membranes
 - Tachycardia, no murmurs
 - Lungs are clear
 - Abdomen w/ decreased bowel sounds
Hypercalcemia of Malignancy

- Most Common Metabolic Emergency in Cancer
- Occurs in about 10%-20% of Cancer Patients
- Most Often Seen with Lung, Breast Hematologic Malignancies
BLT with a Kosher Pickle and Mayonnaise

Cancers that go to bone

• Breast
• Lung / Lymphoma
• Thyroid
• Kidney
• Prostate
• Myeloma

Hypercalcemia

Etiology

• Syndrome Mediated by Production of PTHrP
 • Parathyroid hormone-related peptide which binds to parathyroid hormone receptors, mobilizing calcium from bones, and increasing renal reabsorption of calcium.
 • This Activates Osteoclast Activity
 • Level of Boney Metastasis Does Not Necessarily Correlate with Level of Calcium

• Direct Tumor Invasion into Bony Structures
 • Individual tumor cells secrete a variety of mediators that up-regulate local osteoclastic activity, causing calcium to be released into the serum.

* Immobility May Contribute to Hypercalcemia
Hypercalcemia

Acute Symptoms

<table>
<thead>
<tr>
<th>Early</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Nausea</td>
<td>• Oliguria</td>
</tr>
<tr>
<td>• Vomiting</td>
<td>• Renal failure</td>
</tr>
<tr>
<td>• Constipation</td>
<td>• Stupor, coma</td>
</tr>
<tr>
<td>• Muscle Weakness</td>
<td>• Ileus</td>
</tr>
<tr>
<td>• Mental Status Changes</td>
<td>• Heart block</td>
</tr>
<tr>
<td>• Acute Renal Insufficiency</td>
<td></td>
</tr>
</tbody>
</table>
Hypercalcemia Symptoms

<table>
<thead>
<tr>
<th>CNS</th>
<th>Cardia</th>
<th>GI</th>
<th>Renal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness</td>
<td>Bradycardia</td>
<td>Nausea / Vomiting</td>
<td>Polyuria</td>
</tr>
<tr>
<td>Hypotonia</td>
<td>Decreased QT</td>
<td>Constipation</td>
<td>Calcinosis</td>
</tr>
<tr>
<td>Proximal Myopathy</td>
<td>Prolonged PR Interval</td>
<td>Ileus</td>
<td></td>
</tr>
<tr>
<td>Mental Status Changes</td>
<td>Widened T wave</td>
<td>Pancreatitis</td>
<td></td>
</tr>
<tr>
<td>Seizure /Coma</td>
<td>Arrhythmias</td>
<td>Dyspepsia</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Escalante et al, Cancer Management, May 2014

Hypercalcemia Diagnosis

- History and Physical
- Serum calcium (>11 mg/dL)
- Phosphorus is low or normal
Treatment General Approach

- If Ca++ < 12 and Asymptomatic can be Treated as Outpatient
- Reduce or Eliminate Causative Malignancy
- Hydration with IVF (200 – 300ml/Hr based on UOP)
 - Usually Doesn’t Normalize Calcium Alone
- Diuresis With Loop Diuretic after Hydration
- Biphosphonates – inhibit osteoclastic activity and calcium resorption from bone
- Denosumab

Hypercalcemia Treatment

Bisphosphonates
- Bind to hydroxyapatite crystals
- Onset around 48 hours
- Duration 2-4 weeks
- Pamidronate 60 – 90mg IV
- Zoledronic Acide 4 – 8 mg

Corticosteroids
- Limited Value Outside Hematological Malignancies
- Onset 1 to 5 days
- Duration 2-4 weeks
- Dose: Varied

Calcitonin
- Binds directly to osteoclasts
- Onset: 2 – 6 hours
- Duration: 6 - 12 hours
- Dose: 4 IU/Kg SQ q12hr

Gallium
- Onset: 24 – 48 hours
- Duration: 2 – 3 weeks
- Dose: 200mg/m2 CIV for 5 days
Hypercalcemia Treatment

Volume Expansion
- Loop Diuretic
 - Maintain Urine output ~ 200ml per hour
- Bisphosphonate
 - Consider Corticosteroids
 - Denosumab

Chronic / Prevention
- Supportive Measures / Bisphosphonate
- Cancer Directed Therapy
 - Dialysis

Denosumab
- Potent inhibitor of osteoclast-mediated bone resorption
- Fully humanized monoclonal antibody
- Binds RANKL (receptor activator of nuclear factor kB ligand) to inhibit the formation, function, and survival of osteoclasts
- Reduces serum calcium in patients with bisphosphonate-refractory hypercalcemia of malignancy
Case #2

- 59-year-old woman who was diagnosed with non-Hodgkins Lymphoma
- Presented to Hematology 1 day post treatment and was found to have worsening urinary output.
- Physical examination notable for diffuse lymphadenopathy
 - Otherwise Normal

<table>
<thead>
<tr>
<th>Time</th>
<th>BUN (mg/dL)</th>
<th>Calcium (mg/dL)</th>
<th>Creatinine (mg/dL)</th>
<th>Phosphorous, Inorganic (mg/dL)</th>
<th>LD (UL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21:59</td>
<td>64 H</td>
<td>5.9 L</td>
<td>3.24 H</td>
<td>9.5 H</td>
<td>4500 H</td>
</tr>
<tr>
<td>15:06</td>
<td>57 H</td>
<td>6.4 L</td>
<td>2.71 H</td>
<td>9.8 H</td>
<td>5514 H</td>
</tr>
<tr>
<td>05:37</td>
<td>80 H</td>
<td>5.6 L</td>
<td>2.96 H</td>
<td>14.6 H</td>
<td>5134 H</td>
</tr>
<tr>
<td>23:44</td>
<td>83 H</td>
<td>6.2 L</td>
<td>2.83 H</td>
<td>14.3 H</td>
<td>7313 H</td>
</tr>
<tr>
<td>17:55</td>
<td>72 H</td>
<td>6.5 L</td>
<td>2.34 H</td>
<td>12.4 H</td>
<td>8133 H</td>
</tr>
<tr>
<td>11:40</td>
<td>64 H</td>
<td>7.1 L</td>
<td>1.57 H</td>
<td>12.1 H</td>
<td>8776 H</td>
</tr>
<tr>
<td>04:50</td>
<td>50 H</td>
<td>7.5 L</td>
<td>1.63 H</td>
<td>10.6 H</td>
<td>6437 H</td>
</tr>
<tr>
<td>20:03</td>
<td>25 H</td>
<td>6.7 L</td>
<td>1.68 H</td>
<td>7.5 H</td>
<td>1980 H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>BUN (mg/dL)</th>
<th>Calcium (mg/dL)</th>
<th>Creatinine (mg/dL)</th>
<th>Phosphorous, Inorganic (mg/dL)</th>
<th>LD (UL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:08</td>
<td>23 H</td>
<td>0.6</td>
<td>1.33 H</td>
<td>10.2 H</td>
<td>1473 H</td>
</tr>
<tr>
<td>17:51</td>
<td>23 H</td>
<td>0.6</td>
<td>1.33 H</td>
<td>10.2 H</td>
<td>1473 H</td>
</tr>
<tr>
<td>17:46</td>
<td>Duplicate order, tests credited see W76550</td>
</tr>
<tr>
<td>17:29</td>
<td>15</td>
<td>0.6</td>
<td>1.33 H</td>
<td>10.2 H</td>
<td>1473 H</td>
</tr>
<tr>
<td>16:14</td>
<td>15</td>
<td>0.6</td>
<td>1.33 H</td>
<td>10.2 H</td>
<td>1473 H</td>
</tr>
<tr>
<td>14:54</td>
<td>15</td>
<td>0.6</td>
<td>1.33 H</td>
<td>10.2 H</td>
<td>1473 H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>BUN (mg/dL)</th>
<th>Calcium (mg/dL)</th>
<th>Creatinine (mg/dL)</th>
<th>Phosphorous, Inorganic (mg/dL)</th>
<th>LD (UL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>04:00</td>
<td>0</td>
<td>0.6</td>
<td>0.62 H</td>
<td>3.0 H</td>
<td>344 H</td>
</tr>
</tbody>
</table>
Tumor Lysis Syndrome (TLS)

- Result of a high rate of cell turnover.
 - Results in the release of intracellular products into the circulation.
 - Overwhelms normal homeostatic mechanisms that control potassium, calcium, phosphorus and uric acid.
- Hyperkalemia, Hypocalcemia, Hyperphosphatemia and Hyperuricemia may occur alone or in combination with one another.

Tumor Lysis Syndrome (con’t)

- Can occur with a variety of tumors
 - Most commonly with hematological malignancies
 - Poorly differentiated lymphomas
 - Post Treatment
 - Myeloproliferative disorders
 - Leukemias
 - Acute myelogenous & acute lymphocytic Leukemia
 - Chronic myelogenous leukemia
 - Chronic Lymphocytic leukemia
Tumor Lysis Syndrome

Features of TLS

- Hyperkalemia
 - Most Life-threatening Component of TLS
 - Sudden Increase Can Cause Cardiac Arrhythmias and Death
- Must Rule Out Other Causes
- Treatment is Based on the Underlying Cause

Additional symptoms

- Paresthesias
- Altered level of consciousness
- Seizure
- Nausea/vomiting
- Anorexia
- Flank pain
- Oliguria, hematuria
- edema
Tumor Lysis Syndrome Diagnosis

- Labs:
 - Serum potassium
 - Calcium
 - Phosphorus
 - Uric acid
 - Creatinine

Cairo-Bishop Classification of TLS

- Uric Acid > 8 mg/dl (> 476 umol/L) or 25% increase from baseline
- Potassium > 6 mEq/L (>6 mmol/L) or 25% increase from baseline
- Phosphorus > 6.5 mg/dl (>2.1 mmol/L) or 25% increase from baseline
- Calcium < 7 mg/dl (< 1.75 mmol/L) or 25% decrease from baseline
- Creatinine > 1.5 times the ULN
- Cardiac Arrhythmia or Sudden Death
- Seizure
- Two or More Laboratory Changes Must be Observed within 3 Days Before or 7 Days After Cytotoxic Therapy
- The same criteria do not apply to spontaneous TLS

Lewis et al CA CANCER J CLIN 2011;61:287–314
Tumor Lysis Syndrome Hyperuricemia

- **Prophylactic Measures Prior to the Initiation of Chemotherapy.**
- **Avoid Drugs That Increase Serum Urate or Produce Acidic Urine**
 - Thiazides Diuretics and Salicylates
- **Alkalization of the Urine Should be Initiated to Maintain a Urine pH > 7.0.**
 - Sodium Bicarbonate Solution (50-100 mmol/L)
 - Adjusted so that an Alkaline Urinary pH is Maintained.
 - Carbonic Anhydrase Inhibitor, Acetazolamide May be Used to Increase the Effects of Alkalization.

Tumor Lysis Syndrome Hyperuricemia

- **Prior to Era of Allopurinol Use**
 - Acute uric acid nephropathy developed in as many as 10 percent of patients treated with acute lymphoblastic leukemias
- **Gouty Arthritis May Be Seen**
 - Biggest Risk – ARF
- **Treat with Allopurinol**
 - Start 1 – 2 days Prior to Chemotherapy
 - 10mg/kg/d q 8 hrs
 - Careful in Renal Disease
- **Rasburicase: 0.05 – 0.2 mg/kg**
- **Dialysis May Be Required**
Tumor Lysis Syndrome
Hyperphosphatemia and hypocalcemia

- Phosphate Levels May Reach Four Times Normal
- As Concentration of Phosphate Increases, it Combines with Calcium and Precipitates in the Renal Tubule and in Soft Tissues: “Malignant Calcemia”
- Result is Renal Failure
- Symptoms Include Agitation, Tetany and Bone Pain
- Aluminum Hydroxide: 50 – 150 mg/kg/d divided q 4 – 6 hours
- Dialysis
- Hypocalcemia: Treat with Calcium Gluconate if Symptomatic

Tumor Lysis Syndrome
Treatment of Hyperkalemia

- Sodium Polystyrene 15 – 30 gm
- Normal Saline
- Regular Insulin: 10 U IV
 - Follow BG
 - Dextrose 50% with Insulin
- Sodium Bicarbonate: 50 mEq IV
- Calcium Chloride 100 – 200 mg IV
- Albuterol nebulized
- Dialysis
Case # 3

- Patient is a 85 year old white female who resides in an ECF who experienced worsening abdominal pain over days was transferred to your facility with dizziness and fevers to 102.5°F
- BP 78/38, pulse 133, pulse ox 92% RA
- Pulmonary: crackles bilateral bases
- Abdomen: soft, tender to palpation in the hypogastrum
- Patient minimally responsive
- Start Dopamine to 10mcg / hr
- Blood pressure 100/50, pulse 120

Septic Shock

- A response to overwhelming infection
- Marked by:
 - Hemodynamic instability
 - Altered metabolism
 - Abnormal coagulation
- 75% of cancer patients who get septic shock die if not treated immediately.
- Most common cause - gram-negative bacteria.
Septic Shock (con’t)

• Early
 • Warm, flushed, skin
 • May be febrile/have chills
 • Tachypnea
 • Anxiety
 • Altered mental status
 • Progressive hypotension
 • Decreased urine output

• Late
 • Cold, clammy skin
 • Temperature probably sub-normal
 • Vasoconstriction
 • Systemic vascular resistance
 • Decreased cardiac output
 • Rapid, thready pulse
 • Low/unobtainable B/P
 • Lips/nailbeds cyanotic
 • Decreased urine output
 • Altered level of consciousness

Septic Shock Diagnosis

• Laboratory findings
 • Blood Cultures Positive
 • WBC Increased or Decreased, with left shift (increased segs and bands)
 • Increased PT/PTT
 • Decreased Platelets/Fibrinogen levels
 • Increased BUN/creatinine
 • ABGs Reveal Respiratory Alkalosis
 • Progresses to Metabolic Acidosis
<table>
<thead>
<tr>
<th>Septic Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>• Fluid resuscitation</td>
</tr>
<tr>
<td>• Raise B/P, Improve Perfusion</td>
</tr>
<tr>
<td>• Dopamine</td>
</tr>
<tr>
<td>• Improve Renal Perfusion</td>
</tr>
<tr>
<td>• Increase Peripheral Vascular Resistance</td>
</tr>
<tr>
<td>• Broad Spectrum Antibiotics</td>
</tr>
<tr>
<td>• Immediately After Cultures</td>
</tr>
<tr>
<td>• Supportive Electrolyte Replacement</td>
</tr>
</tbody>
</table>