Oncologic Emergencies

Luca Delatore, MD
James Emergency Department Medical Director
Associate Professor – Clinical
Department of Emergency Medicine
The Ohio State University Wexner Medical Center

Prevalence of cancer: American Cancer Society

- 13.7 million Americans are living with cancer or history of the disease
- American Cancer Society projects 1.6 million new diagnoses this year
- Cancer is the 2nd leading cause of death in the US (Heart disease #1)
- Cancer accounts for more than 500,000 deaths per year

Prevalence of cancer

New therapies have led to longer survival
- New drugs
- Radiation
- Bone marrow transplants
- Immunotherapy—most recent and area of growth at OSU

Cancer-related ED visits

- Patients with high acuity
- Admission rate of 60-70%
- Often (~5%) a new diagnosis made in the ED
- Frequently the more acute patients with lower survival rates present to the ED
- Also older patients and those with limited healthcare access present to the ED
Cancer-related ED visits

Resisting labels is critical for appropriate treatment

- Cancer does not mean terminal
- Cancer does not assume DNR
- Treatment is indicated
 - Pain
 - Dehydration
 - Vomiting
 - Infection
 - Palliative

Why a specific Emergency Department?

- Provide specialized care in the emergency setting for cancer patients
- Improve access to unique treatment and research opportunities for patients with cancer
- Establish hospital based guidelines for emergency department care
- Evaluation of patient outcome
 - Admissions
 - Inpatient length of stay
 - Infection rates
 - Patient Satisfaction

Classification of Oncologic Emergencies

Can be broken down into 3 main areas

- Structural
- Metabolic/endocrine
- Hematologic

Structural Oncologic Emergencies

- Spinal Cord Compression
- Malignant pericardial effusion
- Brain metastases
- Superior Vena Cava Syndrome
Spinal Cord Compression

- Major emergency requiring radiation treatment
- Most are due to metastatic lesions
- Most common in the thoracic spine (70%) and lumbrosacral (20%)
- Most common early symptom is pain (95%)
- Occurs in approximately 5% of all cancer patients
- Most common in breast, lung and prostate cancer, renal, lymphoma
- Life threatening if above C3

Spinal Cord Compression - Exam findings

- Tenderness to palpation
- Weakness
- Spasticity
- Abnormal reflexes
- Sensory deficits
 - Good indicator of location of lesion
- Palpable bladder
- Decreased rectal tone

Spinal Cord Compression

- Early recognition is key. Early MRI imaging
- Prognosis is closely related to pretreatment level of function
- Late Signs
 - Autonomic dysfunction
 - Urinary retention
 - Constipation
- Transport for rapid evaluation of emergent radiation therapy and steroids
- Surgery for tissue diagnosis and stabilization
- Treatment delays may result in loss of bowel or bladder function

Malignant pericardial effusion

- Due to neoplastic infiltration or radiation treatment
- Can lead to cardiac tamponade
- Difficult diagnosis to make and often misdiagnosed as CHF, PE or anxiety
- Beat to beat alteration of the QRS
- Symptoms
 - Dyspnea
 - Orthopnea
 - Cough
 - Chest pain
 - Weakness
Malignant pericardial effusion

- **Physical exam findings:**
 - “muffled” heart sounds
 - Increased JVP
 - Decreased systolic blood pressure

- **Echocardiogram (Most Helpful Tool)**
 - Diastolic collapse of RA and RV
 - Dilated IVC

Cardiac tamponade

- Initial treatment is temporizing
 - Oxygen, IVF, vasopressors
- May require pericardiocentesis, pericardial window
- 60% of malignant effusions reaccumulate
- Treat underlying malignancy

Brain Metastases

- **Most common form of malignant CNS involvement**
- **Common associated cancers:**
 - Lung (most common)
 - Breast
 - Melanoma
 - Leukemia/lymphoma
- **Causes symptoms via compression and edema**
 - Headache
 - Seizures
 - Focal weakness
 - Exam may be normal

- **Diagnosis:** Find the primary tumor
- **CT scan of the chest, abdomen, and pelvis**
- If negative, then consider mammogram or other imaging study
- In 30% of patients no primary tumor is identified
Brain Metastases

- Alleviate Symptoms – ie palliation
- Radiation is the primary treatment for brain metastases
- If single brain lesion, then surgery may be reasonable with or without radiation
- Corticosteroids
 - Especially if signs of edema
- Chemotherapy
- Anti-seizure medications – tend to improve quality of life

Superior Vena Cava Syndrome

- Obstruction of the SVC which carries blood back into the heart
- Approximately 90% caused by cancer
- Lung cancer is the most common (65%)
- Clinical features:
 - Edema of the face and arms
 - Swollen collateral veins on the chest
 - Shortness of breath
 - Coughing
 - Difficulty swallowing
 - Headache

Superior Vena Cava Syndrome

- Lung cancer patients account for 65% of all SVCS cases
 - 3 – 15% of patients with Lung CA
 - Four times more likely in right vs left sided tumors
- Lymphoma - 8%
 - Usually in the anterior mediastinum
- Breast and other mediastinal tumors 10%
- Non-malignant conditions account for remainder

Superior Vena Cava Syndrome

- Supportive care and transport
- Elevate the head of the bed and provide oxygen if hypoxic
- Immediate radiation therapy consultation
- Consider anticoagulation (50% will have clot present)
- Radiation is the definitive treatment
- Surgery and chemotherapy in selected cases
- Intravenous stents, balloon angioplasty and surgical bypass are becoming more common
Oncologic Emergencies

Joseph Flynn, DO, MPH, FACP
Associate Professor – Clinical
Division of Hematology & Oncology
The Ohio State University Wexner Medical Center

Overview

• General Considerations
• Hypercalcemia of malignancy
• Tumor Lysis Syndrome
• Septic Shock

General Considerations

• Oncologic Emergencies Have Increased
• Rapid Recognition Required
• Aggressive Treatment is Indicated
• If due to underlying cancer, then treat the cancer
• Palliation in Advanced Malignancies
 • Must Consider Doing Nothing

Case # 1

• A 60 y/o white female is brought to the ER by her family for new onset worsening confusion
 • The patient notes only vague abdominal pain and constipation
 • PE:
 • HR 115, BP 88/40, RR 10, T 100.2
 • Elderly appearing female
 • Dry mucous membranes
 • Tachycardia, no murmurs
 • Lungs are clear
 • Abdomen w/ decreased bowel sounds
Laboratory

Hypercalcemia of Malignancy

• Most Common Metabolic Emergency in Cancer
• Occurs in about 10%-20% of Cancer Patients
• Most Often Seen with Lung, Breast Hematologic Malignancies

Hypercalcemia Etiology

• Syndrome Mediated by Production of PTHrP
 • Parathyroid hormone-related peptide which binds to parathyroid hormone receptors, mobilizing calcium from bones, and increasing renal reabsorption of calcium.
 • This Activates Osteoclast Activity
 • Level of Boney Metastasis Does Not Necessarily Correlate with Level of Calcium
• Direct Tumor Invasion into Bony Structures
 • Individual tumor cells secrete a variety of mediators that up-regulate local osteoclastic activity, causing calcium to be released into the serum.
• Immobility May Contribute to Hypercalcemia

BLT with a Kosher Pickle and Mayonaisse

Cancers that go to bone

• Breast
• Lung / Lymphoma
• Thyroid
• Kidney
• Prostate
• Myeloma
Hypercalcemia Acute Symptoms

- **Early**
 - Nausea
 - Vomiting
 - Constipation
 - Muscle Weakness
 - Mental Status Changes
 - Acute Renal Insufficiency

- **Late**
 - Oliguria
 - Renal failure
 - Stupor, coma
 - Ileus
 - Heart block
 - Acute Renal Insufficiency

Hypercalcemia Symptoms

<table>
<thead>
<tr>
<th>CNS</th>
<th>Cardia</th>
<th>GI</th>
<th>Renal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness</td>
<td>Bradycardia</td>
<td>Nausea / Vomiting</td>
<td>Polyuria</td>
</tr>
<tr>
<td>Hypotonia</td>
<td>Decreased QT</td>
<td>Constipation</td>
<td>Calciumosis</td>
</tr>
<tr>
<td>Proximal Myopathy</td>
<td>Prolonged PR</td>
<td>Ileus</td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental Status</td>
<td>Widened T wave</td>
<td>Pancreatitis</td>
<td></td>
</tr>
<tr>
<td>Changes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seizure / Coma</td>
<td>Arrhythmias</td>
<td>Dyspepsia</td>
<td></td>
</tr>
</tbody>
</table>

Hypercalcemia Diagnosis

- History and Physical
- Serum calcium (>11 mg/dL)
- Phosphorus is low or normal

Adapted from Escalante et al, Cancer Management, May 2014
Treatment
General Approach
• If Ca++ < 12 and Asymptomatic can be Treated as Outpatient
• Reduce or Eliminate Causative Malignancy
• Hydration with IVF (200 – 300ml/Hr based on UOP)
 • Usually Doesn’t Normalize Calcium Alone
• Diuresis With Loop Diuretic after Hydration
• Bisphosphonates – inhibit osteoclastic activity and calcium resorption from bone
• Denosumab

Hypercalcemia Treatment

Bisphosphonates
• Bind to hydroxyapatite crystals
• Onset around 48 hours
• Duration 2-4 weeks
• Pamidronate 60 – 90mg IV
• Zoledronic Acide 4 – 8 mg
• Corticosteroids
• Limited Value Outside Hematological Malignancies
• Onset 1 to 5 days
• Duration 2-4 weeks
• Dose: Varied
• Calcitonin
• Binds directly to osteoclasts
• Onset: 2 – 6 hours
• Duration: 6 - 12 hours
• Dose: 4 IU/Kg SQ q12hr
• Gallium
• Onset: 24 – 48 hours
• Duration: 2 – 3 weeks
• Dose: 200mg/m2 CIV for 5 days

Volume Expansion
Loop Diuretic
Maintain Urine output ~ 200ml per hour
Bisphosphonate
Consider Corticosteroids

Chronic / Prevention
Supportive Measures / Bisphosphonate
Cancer Directed Therapy

Denosumab
• Potent inhibitor of osteoclast-mediated bone resorption
• Fully humanized monoclonal antibody
• Binds RANKL (receptor activator of nuclear factor kB ligand) to inhibit the formation, function, and survival of osteoclasts
• Reduces serum calcium in patients with bisphosphonate-refractory hypercalcemia of malignancy
Case #2

- 59-year-old woman who was diagnosed with non-Hodgkins Lymphoma
- Presented to Hematology 1 day post treatment and was found to have worsening urinary output.
- Physical examination notable for diffuse lymphadenopathy
- Otherwise Normal

Tumor Lysis Syndrome (TLS)

- Result of a high rate of cell turnover.
- Results in the release of intracellular products into the circulation.
- Overwhelms normal homeostatic mechanisms that control potassium, calcium, phosphorus and uric acid.
- Hyperkalemia, Hypocalcemia, Hyperphosphatemia and Hyperuricemia may occur alone or in combination with one another.

Tumor Lysis Syndrome (con’t)

- Can occur with a variety of tumors
 - Most commonly with hematological malignancies
 - Poorly differentiated lymphomas
 - Post Treatment
 - Myeloproliferative disorders
 - Leukemias
 - Acute myelogenous & acute lymphocytic Leukemia
 - Chronic myelogenous leukemia
 - Chronic lymphocytic leukemia
Tumor Lysis Syndrome

Features of TLS

- Hyperkalemia
 - Most Life-threatening Component of TLS
 - Sudden Increase Can Cause Cardiac Arrhythmias and Death
- Must Rule Out Other Causes
- Treatment is Based on the Underlying Cause

Diagnosis

- Labs:
 - Serum potassium
 - Calcium
 - Phosphorus
 - Uric acid
 - Creatinine

Cairo-Bishop Classification of TLS

- Uric Acid > 8 mg/dl (>476 umol/L) or 25% increase from baseline
- Potassium > 6 mEq/L (>6 mmol/L) or 25% increase from baseline
- Phosphorus > 6.5 mg/dl (>2.1 mmol/L) or 25% increase from baseline
- Calcium < 7 mg/dl (<1.75 mmol/L) or 25% decrease from baseline
- Creatinine > 1.5 times the ULN
- Cardiac Arrhythmia or Sudden Death
- Seizure
- Two or More Laboratory Changes Must be Observed within 3 Days Before or 7 Days After Cytotoxic Therapy
- The same criteria do not apply to spontaneous TLS

Lewis et al CA CANCER J CLIN 2011;61:287–314
Tumor Lysis Syndrome

Hyperuricemia

- **Prophylactic Measures Prior to the Initiation of Chemotherapy.**
- **Avoid Drugs That Increase Serum Urate or Produce Acidic Urine**
 - Thiazides Diuretics and Salicylates
- **Alkalization of the Urine Should be Initiated to Maintain a Urine pH > 7.0.**
 - Sodium Bicarbonate Solution (50-100 mmol/L)
 - Adjusted so that an Alkaline Urinary pH is Maintained.
 - Carbonic Anhydrase Inhibitor, Acetazolamide May be Used to Increase the Effects of Alkalinization.

Tumor Lysis Syndrome

Hyperuricemia

- **Prior to Era of Allopurinol Use**
 - Acute uric acid nephropathy developed in as many as 10 percent of patients treated with acute lymphoblastic leukemias
- **Gouty Arthritis May Be Seen**
 - Biggest Risk – ARF
- **Treat with Allopurinol**
 - Start 1 – 2 days Prior to Chemotherapy
 - 10mg/kg/d q 8 hrs
 - Careful in Renal Disease
- **Rasburicase: 0.05 – 0.2 mg/kg**
- **Dialysis May Be Required**

Tumor Lysis Syndrome

Hyperphosphatemia and hypocalcemia

- **Phosphate Levels May Reach Four Times Normal**
- **As Concentration of Phosphate Increases, it Combines with Calcium and Precipitates in the Renal Tubule and in Soft Tissues : “Malignant Calcemia”**
- **Result is Renal Failure**
- **Symptoms Include Agitation, Tetany and Bone Pain**
- **Aluminum Hydroxide: 50 – 150 mg/kg/d divided q 4 – 6 hours**
- **Dialysis**
- **Hypocalcemia: Treat with Calcium Gluconate if Symptomatic**

Tumor Lysis Syndrome

Treatment of Hyperkalemia

- **Sodium Polystyrene 15 – 30 gm**
- **Normal Saline**
- **Regular Insulin: 10 U IV**
 - Follow BG
 - Dextrose 50% with Insulin
- **Sodium Bicarbonate: 50 mEq IV**
- **Calcium Chloride 100 – 200 mg IV**
- **Albuterol nebulized**
- **Dialysis**
Case # 3

- Patient is a 85 year old white female who resides in an ECF who experienced worsening abdominal pain over days was transferred to your facility with dizziness and fevers to 102.5°F
- BP 78/38, pulse 133, pulse ox 92% RA
- Pulmonary: crackles bilateral bases
- Abdomen: soft, tender to palpation in the hypogastrum
- Patient minimally responsive
- Start Dopamine to 10mcg / hr
- Blood pressure 100/50, pulse 120

Septic Shock

- A response to overwhelming infection
- Marked by:
 - Hemodynamic instability
 - Altered metabolism
 - Abnormal coagulation
 - 75% of cancer patients who get septic shock die if not treated immediately.
 - Most common cause - gram-negative bacteria.

Septic Shock (con’t)

Early
- Warm, flushed, skin
- May be febrile/have chills
- Tachypnea
- Anxiety
- Altered mental status
- Progressive hypotension
- Decreased urine output

Late
- Cold, clammy skin
- Temperature probably sub-normal
- Vasoconstriction
- Systemic vascular resistance
- Decreased cardiac output
- Rapid, thready pulse
- Low/unobtainable B/P
- Lips/nailbeds cyanotic
- Decreased urine output
- Altered level of consciousness

Septic Shock Diagnosis

- Laboratory findings
 - Blood Cultures Positive
 - WBC Increased or Decreased, with left shift (increased segs and bands)
 - Increased PT/PTT
 - Decreased Platelets/Fibrinogen levels
 - Increased BUN/creatinine
 - ABGs Reveal Respiratory Alkalosis
 - Progresses to Metabolic Acidosis
Septic Shock

Treatment

- Fluid resuscitation
 - Raise B/P, Improve Perfusion
- Dopamine
 - Improve Renal Perfusion
 - Increase Peripheral Vascular Resistance
- Broad Spectrum Antibiotics
 - Immediately After Cultures
- Supportive Electrolyte Replacement