Contemporary Management of Renal Masses

Geoffrey N. Box, MD
Vice Chair of Educational Affairs
Assistant Professor
Direct, Laparoscopic Urologic Surgery
Department of Urology
The Ohio State University Wexner Medical Center
James Cancer Hospital and Solove Research Institute

Outline

- Epidemiology
- Differential Diagnosis
- Evaluation
 - Imaging
 - Role for Biopsy
- Treatment
 - Surveillance
 - Surgery
 - Ablation
- Follow-up
- Cases

Renal Mass

- Increasing incidence with widespread use of cross-sectional imaging

- Renal lesions are seen in 15-25% of abdominal imaging studies
 - Most are benign cysts

- Majority are detected incidentally.
Renal Mass- Differential Diagnosis

<table>
<thead>
<tr>
<th>Malignant</th>
<th>Benign</th>
<th>Inflammatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal Cell Carcinoma</td>
<td>Simple cyst</td>
<td>Abscess</td>
</tr>
<tr>
<td>- Clear Cell</td>
<td>Angiomyolipoma</td>
<td>Focal pyelonephritis</td>
</tr>
<tr>
<td>- Papillary</td>
<td>Oncocytoma</td>
<td>Xanthogranulomatous pyelonephritis</td>
</tr>
<tr>
<td>- Chromophobe</td>
<td>Metanephric adenoma</td>
<td>Tuberculosis</td>
</tr>
<tr>
<td>- Collecting duct</td>
<td>Cystic Nephroma</td>
<td></td>
</tr>
<tr>
<td>Urothelial Based</td>
<td>Mixed epithelial/stromal tumor</td>
<td></td>
</tr>
<tr>
<td>Urothelial carcinoma</td>
<td>Reninoma</td>
<td></td>
</tr>
<tr>
<td>Squamous cell</td>
<td>Leimyoma</td>
<td></td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>Pseudotumor</td>
<td></td>
</tr>
<tr>
<td>Wilms tumor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carcinoid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymphoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leukemia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metastasis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Is it Benign or Malignant?

- The question at hand.
- This can frequently determined by radiographic assessment.
- Size Matters
- Current trend is to biopsy more renal masses <4cm.

Radiographic Assessment

- Ultrasound
- CT
- MRI

Key Point:
- Need to determine enhancement
Ultrasound

- Reliable for differentiation of a solid lesion from fluid.
- Can establish the diagnosis of a simple cyst.

CT Scan

- Triple Phase (Renal Protocol)
 - Pre-contrast
 - Post-contrast (venous phase)
 - Delayed (10 min)

- Hounsfield Units (HU)
 - Represents the density of tissue

Enhancement

- Can only be determined if a contrast agent is used
 - CT – iodonated contrast
 - Enhancing Lesion = Pre-contrast to Post-contrast change in HU >15-20
 - MRI – Gadolinium
 - Slightly more subjective

Tissue HU

<table>
<thead>
<tr>
<th>Tissue</th>
<th>HU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>+1000</td>
</tr>
<tr>
<td>Blood</td>
<td>40</td>
</tr>
<tr>
<td>Kidney</td>
<td>30</td>
</tr>
<tr>
<td>Water</td>
<td>0</td>
</tr>
<tr>
<td>Fat</td>
<td>-50</td>
</tr>
<tr>
<td>Air</td>
<td>-1000</td>
</tr>
</tbody>
</table>
MRI

- Pre and Post Gadolinium

Risk of Contrast Agents

- IV Contrast (CT)
 - Contrast Allergy
 - Nephrotoxicity
 - Avoid with severe renal impairment
 - Risk reduction: Hydration

- Gadolinium (MRI)
 - No nephrotoxicity
 - Risk of Nephrogenic Systemic Fibrosis in those with severe renal impairment (EGFR<30).

cG250 PET/CT: Radiolabeled Antibody

- 124I-cG250 (REDECTANE®)
 - Binds carbonic anhydrase IX
 - Clear cell RCC
 - Radiographic diagnosis

- No role for CT PET-FDG with renal tumors.

Fat

- Solid masses with areas of negative HU (<-20) indicate the presence of fat and are diagnostic of AMLs.
 - AML = Angiomyolipoma
 - AML is a benign tumor.
Renal Cysts

- The kidney is one of the most common locations in the body for cyst formation.
- Renal cysts are cavities derived from renal tubules.
- Composed of a layer of epithelial cells enclosing a cavity filled with urine-like liquid or semi-solid material.
- 20% by age 40
- 50% by age 60

Renal Cysts: Bosniak Classification

<table>
<thead>
<tr>
<th>Bosniak Class</th>
<th>Description</th>
<th>Cancer Risk</th>
<th>Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No enhancement Smooth Wall No Septa No Calcifications</td>
<td>0%</td>
<td>None</td>
</tr>
<tr>
<td>II</td>
<td>No enhancement Hairline Septa Fine Calcifications</td>
<td>Minimal</td>
<td>None</td>
</tr>
<tr>
<td>IIIF</td>
<td>No enhancement Hyperdense lesion Multiple Septa Thicker Calcifications</td>
<td><10%</td>
<td>Surveillance</td>
</tr>
<tr>
<td>III</td>
<td>Thickened Wall with Enhancement</td>
<td>50%</td>
<td>Surgery</td>
</tr>
<tr>
<td>IV</td>
<td>Enhancing Nodule</td>
<td>90%</td>
<td>Surgery</td>
</tr>
</tbody>
</table>

Adapted from Campbell-Walsh Urology 10th Ed.

Renal Cysts – Bosniak Classification

Case- Simple Renal Cyst
Imaging Interpretation

- Enhancing renal masses are most likely malignant.

- Simple Cysts (Bosniak Type I):
 - Can be diagnosed by U/S or CT.
 - Do not need follow-up.

- AMLs are benign and can be followed
 - >4cm = greater risk for spontaneous bleeding
 • Selective angioembolization vs. surgery

AML = Angiomyolipoma

Role for Biopsy

- Historically, renal masses have not been biopsied.
 - Most are malignant
 - Issues with accuracy/non-diagnostic rates
 - Fear of needle tract seeding
 - High reported complication rates

Role for Biopsy

- Current role for biopsy is expanding
 - Especially for masses <4cm

- Updated date on biopsy results are much improved.

Role for Biopsy

- Contemporary results of renal mass biopsy:
 - Diagnostic rate: 92%.
 • RCC Subtype Concordance: 80-100%
 • Fuhrman Grade Concordance: 50-70%
 - Complications: <5%
 • Hematoma most common

Marconi et al. Eur Urol 2015
Indications:
Renal Mass Biopsy

- R/o non-renal primary (mets or lymphoma)
- +/- R/o benign lesions
- Confirm diagnosis and histologic subtype in patients with metastases or unresectable lesions
- Confirm diagnosis:
 - Prior to ablative therapy
 - In patients considering observation when surgery is high risk

Biopsy only if it will change management

Tumor Size and Pathology

<table>
<thead>
<tr>
<th>Tumor Size</th>
<th>RCC</th>
<th>Benign*</th>
<th>High Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤2.0</td>
<td>75%</td>
<td>25%</td>
<td>4%</td>
</tr>
<tr>
<td>2.1-3.0</td>
<td>80%</td>
<td>20%</td>
<td>5%</td>
</tr>
<tr>
<td>3.1-4.0</td>
<td>84%</td>
<td>16%</td>
<td>25%</td>
</tr>
</tbody>
</table>

*Oncocytoma and AML – 75%

J Urol 2006; 176:896
Renal Cancer 2015

- **Incidence**
 - 61,560 new cases
 - 14,080 deaths

- **Peak incidence** 5th-7th decades

- **Men > Women**

- **Lifetime Probability of Developing Renal Cancer:**
 - 1 in 49 male (#7)
 - 1 in 84 female (#10)

Renal Cell Carcinoma – Risk Factors

- **Tobacco Exposure**
 - May account for ~20% of cases

- **Obesity**
 - May account for ~40% of cases in US
 - Risk increases ~30% for every 5kg/m² increase in BMI

- **Hypertension**

- **Low socioeconomic status and urban background**

- **More than 100 chemicals have been investigated but none have been definitively established as causative in RCC**

Renal Cancer – Mortality

<table>
<thead>
<tr>
<th>Site</th>
<th>Incidence/yr</th>
<th>Deaths 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate Cancer</td>
<td>220,800</td>
<td>27,540 (12%)</td>
</tr>
<tr>
<td>Bladder Cancer</td>
<td>74,000</td>
<td>16,000 (22%)</td>
</tr>
<tr>
<td>Kidney Cancer</td>
<td>61,560</td>
<td>14,080 (23%)</td>
</tr>
</tbody>
</table>

Renal Cancer – Presentation and Survival

<table>
<thead>
<tr>
<th>Stage at Diagnosis</th>
<th>Distribution</th>
<th>5-yr Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localized</td>
<td>61%</td>
<td>91%</td>
</tr>
<tr>
<td>Regional (lymph nodes)</td>
<td>17%</td>
<td>63%</td>
</tr>
<tr>
<td>Distant (metastatic)</td>
<td>18%</td>
<td>11%</td>
</tr>
</tbody>
</table>

Seer Database

Clinical Presentation

- 80% incidental
- Flank pain
- Gross hematuria
- Palpable mass

"Classic Triad" <10%
- Microhematuria
- Paraneoplastic syndromes (10-20%)

Paraneoplastic syndromes

- "Internist's Tumor"
 - Elevated ESR 55%
 - HTN 38%
 - Anemia 36%
 - Cachexia 35%
 - Pyrexia 17%
 - Elevated LFTs 14%
 - Hypercalcemia 5%
 - Polycythemia 4%
 - Neuromyopathy 3%

Clinical Presentation - RCC

- Local Tumor Growth
 - Hematuria
 - Flank Pain
 - Abdominal Mass

- Metastasis
 - Persistent Cough
 - Bone Pain
 - Cervical Lymphadenopathy
 - Constitutional Symptoms

- Obstruction of IVC
 - Bilateral Lower Extremity Edema
 - Right-sided Varicocele (or nonreducing Varicocele)

Renal Cell Carcinoma: Histologic Subtypes

<table>
<thead>
<tr>
<th>Type</th>
<th>Clear cell</th>
<th>Papillary</th>
<th>Chromophobe</th>
<th>Oncocytoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq (%)</td>
<td>75</td>
<td>15</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Hereditary RCC

<table>
<thead>
<tr>
<th>Disease</th>
<th>Gene (chromosome)</th>
<th>Histology</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>von Hippel-Lindau</td>
<td>VHL (3)</td>
<td>Clear Cell</td>
<td>75%</td>
</tr>
<tr>
<td>HLRCC*</td>
<td>FH (1)</td>
<td>Papillary Type 2</td>
<td>10%</td>
</tr>
<tr>
<td>Birt-Hogg-Dube</td>
<td>BHD (17)</td>
<td>Chromophobe/Oncocytoma</td>
<td>10%</td>
</tr>
<tr>
<td>Hereditary papillary RCC</td>
<td>Met (7)</td>
<td>Papillary Type 1</td>
<td>5%</td>
</tr>
</tbody>
</table>

*HLRCC = Hereditary Leiomyomatosis Renal Cell Carcinoma

VHL: Renal Cell Carcinoma

- RCC occurs in 50% of VHL patients
 - Males=females in VHL
 - 4th to 5th decade (39)
 - Now most common cause of death

Renal Cell Carcinoma: Staging

<table>
<thead>
<tr>
<th>Stage</th>
<th>Tumor</th>
<th>Lymph Nodes</th>
<th>Metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1 (<7cm)</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2 (>7cm)</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T1 or T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3 (vein/fat)</td>
<td>N0 or N1</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>T4 (outside Gerota’s) Any T</td>
<td>Any N</td>
<td>Any M</td>
</tr>
</tbody>
</table>

Treatment Options

- Surveillance

- Surgical Excision
 - Radical Nephrectomy
 - Partial Nephrectomy

- Needle Ablation
 - Cryoablation or Radiofrequency Ablation

- RCC does NOT respond to chemotherapy or radiation
Decision Making

- Tumor Characteristics:
 - Size
 - Location
 - Appearance

- Patient Characteristics
 - Comorbid disease
 - Life expectancy
 - Patient desire

Active Surveillance (AS)

- Incidentally detected tumors:
 - Small size (<4cm)
 - Elderly
 - Patients with significant comorbidity unfit for surgery

- Opportunity to observe the natural history of these small tumors.

Tumor Size and Pathology

<table>
<thead>
<tr>
<th>Tumor Size</th>
<th>RCC</th>
<th>Benign*</th>
<th>High Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤2.0</td>
<td>75%</td>
<td>25%</td>
<td>4%</td>
</tr>
<tr>
<td>2.1-3.0</td>
<td>80%</td>
<td>20%</td>
<td>5%</td>
</tr>
<tr>
<td>3.1-4.0</td>
<td>84%</td>
<td>16%</td>
<td>25%</td>
</tr>
</tbody>
</table>

*Oncocytoma and AML – 75%

Active Surveillance

- Tumors <3cm
 - Risk of developing metastasis in 3 years is ~1%

- Average growth rate ~0.3cm/yr

- Most studies only have limited follow-up

- Follow-up protocol is not defined
 - Repeat imaging every 6-12 months
Active Surveillance

- AUA Guidelines:
 - “AS is a reasonable option for patients with a limited life expectancy or for those who are unfit for or do not desire intervention.”

Risk-adapted Management

- Biopsy can be helpful
- More favorable histology:
 - Papillary type 1
 - Chromophobe
 - Low grade:
 - Fuhrman grade 1 and 2.

Risk-adapted Management

- 5 yr Cancer specific survival:
 - Fuhrman Grade (clear cell RCC):
 - I: 94%
 - II: 88%
 - III: 63%
 - IV: 39%
 - Low (I&II): 90%
 - High (I&II): 61%

Surgery

- Approach?
 - Open vs. Laparoscopic vs. Robotic
- Radical vs. Partial Nephrectomy?
 - Nephron preservation
PARTIAL NEPHRECTOMY

- Partial nephrectomy oncologically equivalent to radical nephrectomy.
 Brou et al. J Urol 2010; 183:983

- L/S PN equivalent to Open PN with less morbidity.
 - Technical obstacles
 - MIS- more likely to have radical nephrectomy
 Gill et al. J Urol 2007; 178:41

- More attention has been given to the significant morbidity associated the chronic kidney disease (GFR<60).
 - Surgical vs. Medical
 - Nephron-preservation
 Leibovich et al. J Urol 2004; 171:1066
 Breau et al. J Urol 2010; 183:903

Chronic Kidney Disease (CKD)

- GFR <60 ml/min/1.73m² for at least 3 months

- Important consideration with significant associated morbidity and mortality

- RCC patients are NOT donor nephrectomy patients
 - Often have HTN and/or DM

- Median survival after starting dialysis is 2-2.5 years

Renal Cancer – Nephron Preservation

<table>
<thead>
<tr>
<th>CKD Stage (Estimated GFR (ml/min/1.73m²))</th>
<th>Death from Any Cause</th>
<th>Any Cardiovascular Event</th>
<th>Any Hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKD III (30-44)</td>
<td>1.8</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>CKD IV (15-29)</td>
<td>3.2</td>
<td>2.8</td>
<td>2.1</td>
</tr>
<tr>
<td>CKD V (<15)</td>
<td>5.9</td>
<td>3.4</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Indications for Nephron Sparing Surgery

- **Absolute/Imperative**: To prevent anephric state
 - Anatomic/Functional solitary kidney
 - Bilateral RCC
- **Relative**: Contralateral kidney is threatened by local, systemic, genetic conditions that may affect function
 - DM, HTN, stones, RAS, VHL
- **Elective**: NSS with a normal contralateral kidney

Partial Nephrectomy

- **GOALS**
 - Cancer Control
 - Margins
 - CSS
 - Preservation of renal function
 - Technical ability to perform NSS
 - ↓ Warm Ischemia time
 - Selective/no ischemia
 - ↓ Complications
 - ↓ Convalescence
- Robotics facilitates very difficult partial nephrectomies

Partial Nephrectomy

- Open
- Laparoscopic
- Robotic
- Approach is not as important as preserving nephrons → partial nephrectomy

RAPN - Nationwide Inpatient Sample

<table>
<thead>
<tr>
<th></th>
<th>RAPN</th>
<th>OPN</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (2008-2010)</td>
<td>9095</td>
<td>25461</td>
<td></td>
</tr>
<tr>
<td>Transfusion</td>
<td>5.8%</td>
<td>10.6%</td>
<td><0.001</td>
</tr>
<tr>
<td>Post-op Complications</td>
<td>22.1%</td>
<td>30.5%</td>
<td><0.001</td>
</tr>
<tr>
<td>LOS</td>
<td>3</td>
<td>4</td>
<td>ns</td>
</tr>
<tr>
<td>Prolonged LOS (>75th %ile)</td>
<td>12.4%</td>
<td>34.8%</td>
<td><0.001</td>
</tr>
</tbody>
</table>

RIGHT ROBOTIC PARTIAL NEPHRECTOMY

- Solitary Kidney
- BMI: 48
- Pre-op Cr: 2.03 (eGFR-37)
- Post op Cr: 2.10

Margin Assessment
ROBOTICS – Partial Nephrectomy

RAPN with unexpected venous thrombus video
Laparoscopic Radical Nephrectomy

Laparoscopic surgery is the preferred approach for most tumors.

Renal ablative techniques

- Potential for less morbidity/complications
- Allows treatment of older patients who are not good surgical candidates
- Potential for similar efficacy to partial nephrectomy for select masses

Indications for ablation of renal masses

- Solid renal lesion <3cm (T1a)
 - Not good candidates:
 - Tumor deep in the renal sinus
 - Adjacent to the renal hilum or ureter
 - Anterior tumors with adjacent bowel
- Best suited to treat renal lesions in patients with comorbidities that preclude a major surgical procedure
 - i.e. elderly, severe COPD, CV disease
- Renal insufficiency
- Solitary kidney
- Multifocal/Recurrent tumors secondary to VHL, BHD etc

Ablative Modalities

- Radiofrequency Ablation (RFA)
- Cryoablation
- Generally performed percutaneously with CT, MRI or U/S guidance.

Leveillee R, Wingo M. Ablation technologies for renal cell carcinoma. Oncology spectrum 1(2)
Percutaneous cryoablation

Laparoscopic cryoablation

Post-ablation imaging

2 weeks 6 weeks 3 months
Treatment Options: LOCAL RECURRENCE FREE SURVIVAL

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Survival</th>
<th>Tumor Size (cm)</th>
<th>F/U (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA</td>
<td>87.0%</td>
<td>2.7</td>
<td>19</td>
</tr>
<tr>
<td>Cryo</td>
<td>90.6%</td>
<td>2.6</td>
<td>18</td>
</tr>
<tr>
<td>LPN</td>
<td>98.4%</td>
<td>2.6</td>
<td>15</td>
</tr>
<tr>
<td>OPN</td>
<td>98.0%</td>
<td>3.1</td>
<td>47</td>
</tr>
<tr>
<td>LRN</td>
<td>99.2%</td>
<td>4.6</td>
<td>18</td>
</tr>
<tr>
<td>ORN</td>
<td>98.1%</td>
<td>4.8</td>
<td>58</td>
</tr>
</tbody>
</table>

RFA=radiofrequency ablation; Cryo=cryoablation; LPN=laparoscopic partial nephrectomy; OPN=open partial nephrectomy; LRN=laparoscopic radical nephrectomy; ORN=open radical nephrectomy

Adapted from Campbell-Walsh Urology 10th Ed.

Treatment Options - Summary

- **Surgery**
 - Gold Standard
 - Suitable for tumors of all sizes
 - Nephron-sparing when possible
 - Minimally invasive approaches available

- **Needle Ablation**
 - Tend to have higher local recurrence rates

- **Active Surveillance**
 - Long term outcomes unknown
 - Not best for younger/healthier patients

Advanced Disease

- Surgery remains an integral part of the management of these patients.
 - Tumor thrombus in IVC
 - Regional Lymphadenopathy
 - Metastatic disease

- Surgery is the only treatment that offers the opportunity for cure

Robotic Nephrectomy with IVC Thrombectomy

Robotic Nephrectomy with IVC Thrombectomy
Robotic Nephrectomy with IVC Thrombectomy

Robotic Nephrectomy with IVC Thrombectomy
Metastatic Renal Cell Carcinoma

- Cytoreductive nephrectomy

J Urol 2004; 171:1071

Case:
Simple Renal Cyst

Case:
2 cm Enhancing Renal Mass

Case:
Left 9 cm Renal Mass & 4 cm Adrenal Mass
Conclusion

- Renal masses are typically found incidentally.
- A simple renal cyst can be diagnosed by U/S or CT and does not need follow-up.
- Most solid renal masses represent renal cell carcinoma.
- Nephron-sparing surgery should be performed when technically feasible.
- Most surgery can be performed in a minimally invasive fashion (laparoscopic/robotic).