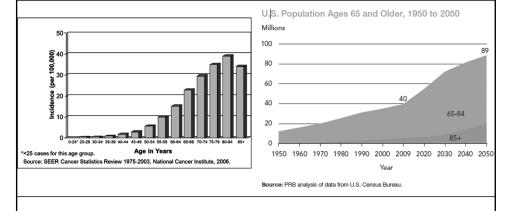
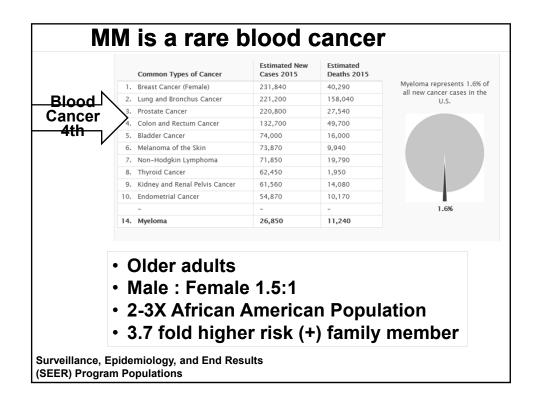
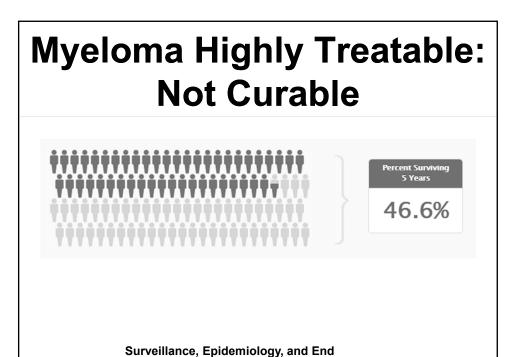

Multiple Myeloma in the Aging Adult

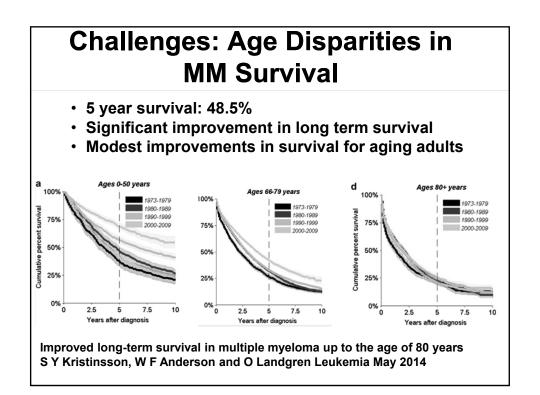
Ashley Rosko, MD
Assistant Professor-Clinical
Division of Hematology
The Ohio State University Wexner Medical Center

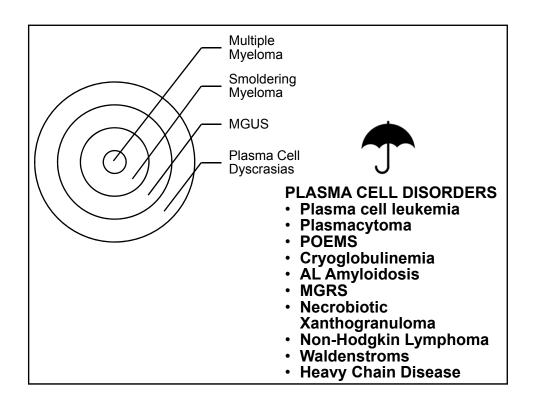

Hematologic Malignancy

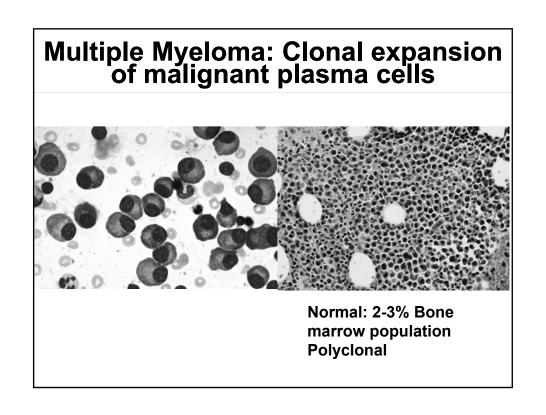

Myeloma Dynamic Field Epidemic 57% Increase by 2030


Myeloma is a disease of aging adults

· Median age diagnosis: 69




Surveillance, Epidemiology, and End Results (SEER) Program Populations U.S. Census Bureau



Results (SEER) Program Populations

C: Calcium elevated -fatigue, drowsiness, confusion - severe abdominal pain

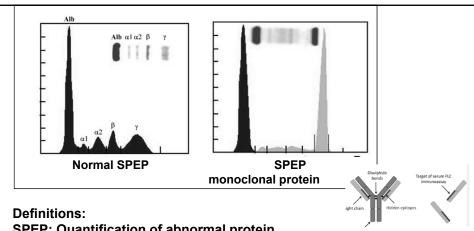
R:Renal failure
- poor urine output
- swelling of legs / feet
- poor control of electrolytes and minerals

A: Anemia fatigue, sob, exhaustion

B: Bone disease lytic lesions severe osteoporosis -fractures

*****E: Extra

- Clonal plasma cells in BM ≥ 60%
- · Serum FLC ratio ≥ 100
- · > 1 MRI focal lesion ≥ 5 mm on MRI


Rajkumar SV, et al. Lancet Oncol. 2014;15:e538-e548.

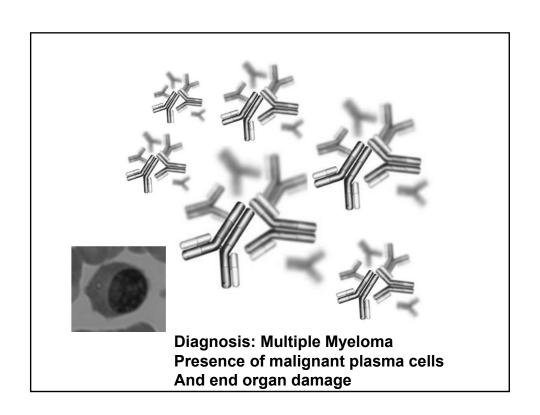
Revised IMWG Diagnostic Criteria for Multiple Myeloma*

Multiple Myeloma

- Clonal BM plasma cells
 ≥ 10% or ≥ 1 biopsy-proven
 plasmacytoma AND 1 or
 more MM-defining events:
- ■≥ 1 CRAB† feature
- Biomarkers of malignancy:
 - Clonal plasma cells in BM ≥ 60%
 - Serum FLC ratio ≥ 100
 - > 1 MRI focal lesion ≥ 5 mm on MRI, positive PET or CT,
- C: Calcium elevation (> 11 mg/dL or > 1 mg/dL higher than ULN)
- R: Renal insufficiency (CrCl < 40 mL/min or serum creatinine > 2 mg/dL)
- A: Anemia (Hb < 10 g/dL or 2 g/dL < normal)
- B: Bone disease (≥ 1 lytic lesions on skeletal radiography, CT, or PET/CT)

Rajkumar SV, et al. Lancet Oncol. 2014;15:e538-e548.

SPEP: Quantification of abnormal protein IFE: Identification of an abnormal protein


FLC: Serum quantification of free lambda and kappa light

chains (16% MM)

Bence Jones Proteinuria: 24 UPEP Quantitative Immunoglobulins:

Serum quantification: IgG (50%), IgA (21%), IgM (IgD 2%)

IgM Paraprotein signal = Waldenstroms

Anemia Under recognized: Not a normal part of aging

	NGRC ²³	Beverly Healthcare ²⁴
Sample size	900	6,200
Age, median (yr)	79	83
≥65 years	87%	100%
Female	63%	70%
Anemia		
Hb, mean (g/dL)	11.9 female	11.8 (total)
	12.9 male	
Prevalence*	48%	60%
Hb < 10 g/dL	11%	13%

Table 1.

- Anemia work-up
- 2/3 MM have Anemia at Dx
 Protein-albumin 97% M protein

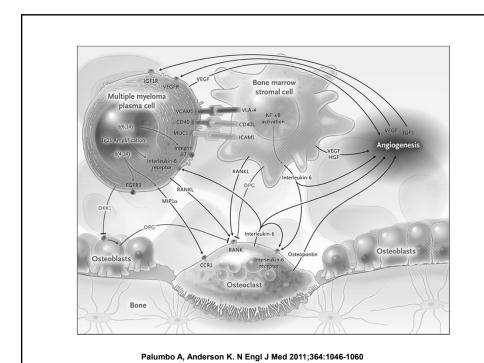
Artz 2008 Semin Hematol

Half of patients will have bone disease at presentation

Hypercalcemia
• 1/3 Patients
At diagnosis

Primary and Secondary Osteoporosis Challenge in MM Population

Primary osteoporosis:


Deterioration of bone unassociated with other chronic illness and is related to aging and decreased gonadal function.

Secondary osteoporosis:

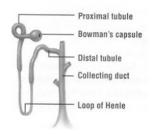
2/2 chronic conditions that accelerated bone loss

Clinically, distinguishing fragility fractures related to primary osteoporosis from MM induced compression fractures is problematic.

- Steroid use
- Tempo? Sudden onset more than 1 fracture
- Other bone pain

How do you image?

- Bone Scan = osteolytic and osteoblastic activity
- Bone Surveys (Plain x-rays) = pick up lytic lesions
 MM unopposed osteolytic activity
- 50% of bone needs to be gone to pick them up
 - Osteoporosis
- MRI and sometimes PET scans
 - Extramedullary disease 7%
 - Non-secretory disease
 - Supportive care: Bisphosphonates and/or Radiation


Half of MM patients present with Renal Disease

Renal Injury = TREATMENT ASAP

Renal Recovery? Type of Protein Underlying Renal Disease Medications (NSAIDS, contrast)

Renal Entities

- MGRS
- Hyperviscosity
- Controversial
- Plasma exchange

International Staging System for Myeloma

How proliferative is MM and how much End organ damage?

Stage	Criteria
Stage I	β₂-M < 3.5 mg/L and serum albumin ≥ 3.5 g/dL
Stage II	Not stage I or III
Stage III	ß ₂ -M ≥ 5.5 mg/L

1 62 (58-65) 2 44 (42-45) 3 29 (26-32) 80 0 24 48 72 96 120 144 168 192 216 Mos From Initial Chemotherapy Treatment

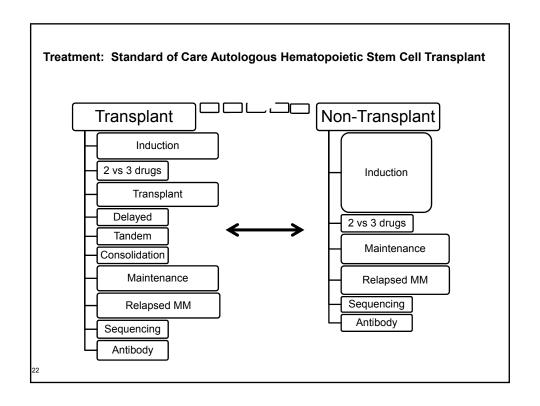
ISS

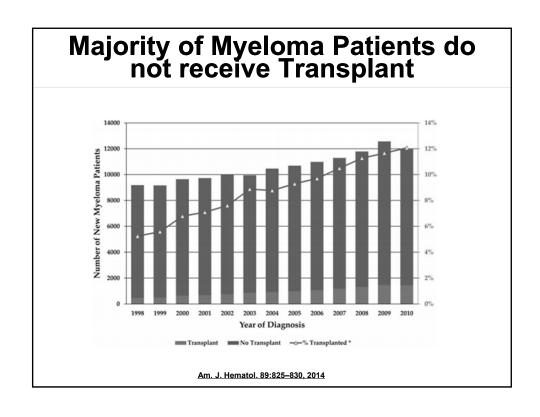
Overall survival

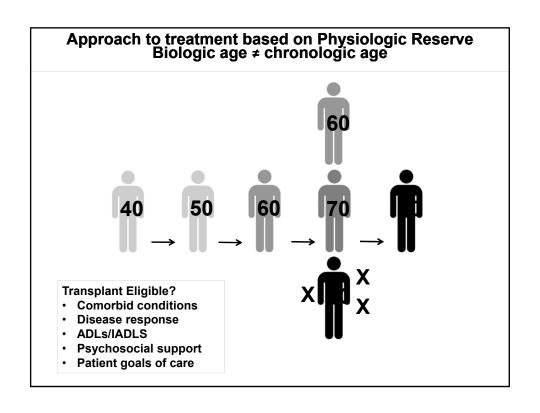
Greipp PR, et al. J Clin Oncol. 2005;23:3412-3420.

Cytogenetics Highly Informative

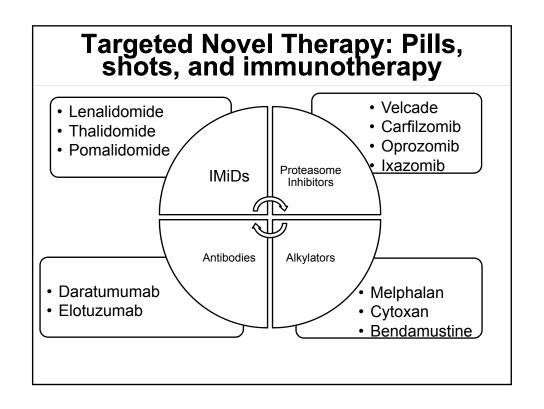
High Risk	Intermediate Risk	Standard Risk
17p deletion	t(4;14)	Hyperdiploidy (trisomies)
t(14;16)	Deletion 13 by karyotyping	t(11;14)
t(14;20)	hypodiploidy	t(6;14)
High risk gene expression profiling	1q abnormality	Normal cytogenetic
Complex Karyotype		Del 13 by FISH (molecular)
Del 17p or P53		

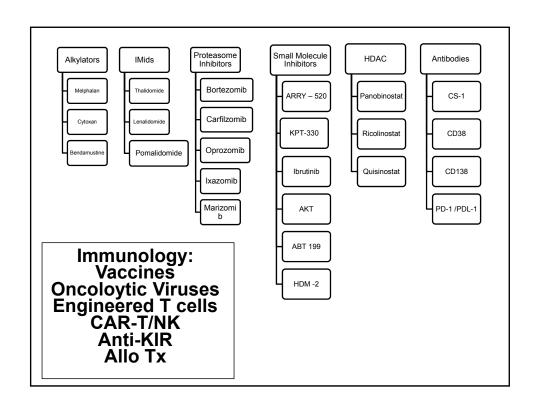

Rajkumar SV. Treatment of multiple myeloma. Nat Rev Clin Oncol 2011; 26:479. Rajkumar SV. Multiple myeloma: 2012 update on diagnosis, risk-stratification, and management. Am J Hematol 2012; 87:78.


Revised International Staging System (R-ISS)


- 4,445 newly diagnosed patients enrolled onto 11 multicenter trials 2005-2012.
- Presence of Del(17p), t(4;14), or t(14;16) were considered high risk.

R-ISS	ISS	iFISH	LDH	os
1	β2M < 3.5, Alb ≥ 3.5	Standard	Normal	NR
2				83 mos.
3	β2M ≥ 5.5	High risk	or high	43 mos.


Palumbo A et al. Revised International Staging System for Multiple Myeloma: A report from the international myeloma working group. *JCO* 33, 3-Aug-2015.



Prompt Recognition and Referral: Early Death in Older Adults with Myeloma MM deaths overall are highest: aged 75 years and greater Early mortality (death within one year of diagnosis) is most common in those 70 years and older ■ No early mortality ■ Early mortality 100% 90% 80% 70% 60% 50% [⊒] 53% 40% 30% 20% 10% 0 3 Number of risk factors Kumar SK, et al Leukemia. May 2014;28(5):1122-1128

Diagnosis Of Multiple Myeloma and Treatment of Transplant Eligible Patients

Yvonne Efebera, MD, MPH
Associate Professor-Clinical
Division of Hematology
The Ohio State University Wexner Medical Center

Objectives

- Know the difference between MGUS, smoldering Myeloma, Symptomatic multiple Myeloma
- Understand the general clinical features of plasma cell myeloma including the diagnosis, and steps required for evaluation.
- Understand Treatment strategy:
 - Newly diagnosed Multiple Myeloma Patients Eligible for Transplant
 - Newly diagnosed Multiple Myeloma Patients not Eligible for Transplant – Ashley Rosko

Revised IMWG Diagnostic Criteria for Multiple Myeloma*

MGUS

- M protein < 3 g/dL and
- Clonal plasma cells in BM < 10%
- No myeloma defining events

Smoldering

- •M protein ≥ 3 g/dL (serum) or ≥ 500 mg/24 hrs (urine)
- Clonal plasma cells in BM 10% to 60%
- No myeloma-defining events

Multiple Myeloma

- Clonal BM plasma cells
 ≥ 10% or ≥ 1 biopsy-proven
 plasmacytoma AND 1 or
 more MM-defining events:
- ■≥ 1 CRAB† feature
- Biomarkers of malignancy:MDE
 - Clonal plasma cells in BM ≥ 60%
 - Serum FLC ratio ≥ 100
 - > 1 MRI focal lesion ≥ 5 mm on MRI, positive PET or CT,
- †C: Calcium elevation (> 11 mg/dL or > 1 mg/dL higher than ULN)
- R: Renal insufficiency (CrCl < 40 mL/min or serum creatinine > 2 mg/dL)
- A: Anemia (Hb < 10 g/dL or 2 g/dL < normal)
- B: Bone disease (≥ 1 lytic lesions on skeletal radiography, CT, or PET/CT)
- *New criteria associated with ≥ 80% risk of progression to MM within 2 yrs.

Rajkumar SV, et al. Lancet Oncol. 2014;15:e538-e548.

Risk of MGUS → Myeloma		
Risk group	Relative Risk	Risk @ 20 yrs
Lowest risk: 1. M protein < 1.5 g/dL 2. IgG subtype 3. Normal FLC ratio (K/L)	1	5%
Any 1 factor abnormal	5.4	21%
Any 2 factors abnormal	10.1	37%
All 3 factors abnormal	20.8	58%

Rajkumar, V et al. Blood . 2005

Smoldering Multiple Myeloma (SMM)

% of cases that transition from Smoldering Myeloma to Multiple Myeloma in 5 years

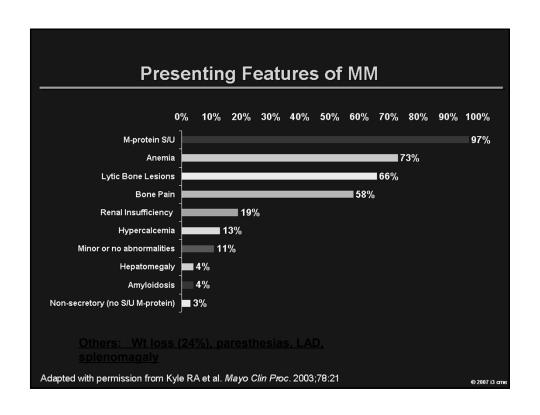
	3 criteria:	1/3	2/3	3/3
Mayo Clinic Criteria	 M-protein ≥3 g/dL ≥10% clonal bone marrow plasma cells Free light-chain <0.125 or >8 	25%	51%	76%

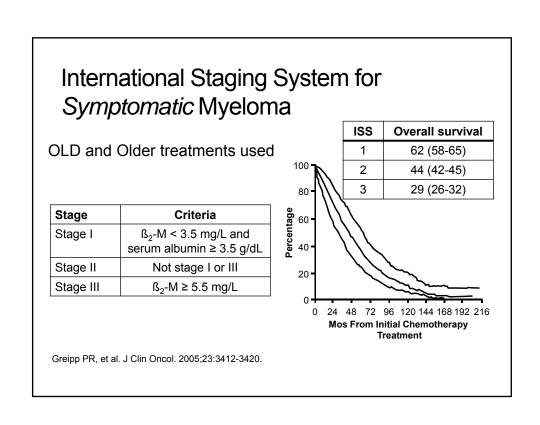
NO consensus on

1: if to treat SMM

2: When to start treatment

Clinical trials ongoing


Currently: watch until Progression to MM


Symptomatic Multiple Myeloma

- About 20,000-22,000 new cases a year in the US
- 10% of hematologic malignancies 2nd most common blood Cancer
 - 1% of all cancers
- About 75,000 patients living with MM in the US today
- Blacks > white (2:1) Males>Females (1.4:1)
- About 700 new cases in Ohio annually
- Causes: mainly unknown, but some environmental exposures are associated:
 - Ionizing radiation, organophosphates, benzene, agent orange,
 - · First responders at WTC on 9/11/01

Most Important: it is not Curable BUT VERY TREATABLE

Every Myeloma Doc's Nightmare

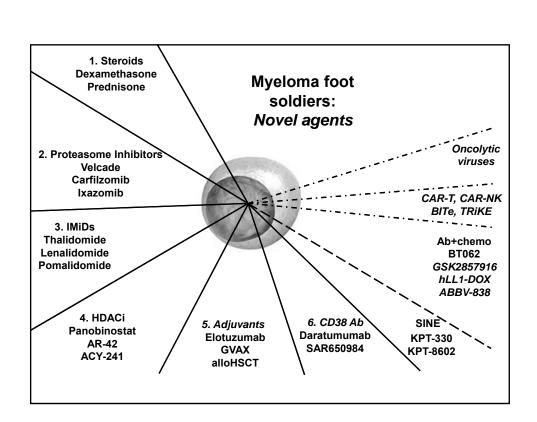
Risk stratification: multiple myeloma is not one disease!

High Risk	Intermediate Risk	Standard Risk
17p deletion	t(4;14)	Hyperdiploidy (trisomies)
t(14;16)	Deletion 13 by karyotyping	t(11;14)
t(14;20)	hypodiploidy	t(6;14)
High risk gene expression profiling	1q abnormality	Normal cytogenetic
Complex Karyotype		Del 13 by FISH (molecular)
Del 17p or P53		

Myeloma patients are risk-stratified at initial diagnosis based on fluorescence in situ hybridization (FISH) studies on the bone marrow for t(11;14), t(4;14), t(6;14), t(14;16), t(14;20), del17p13, and trisomies of odd numbered chromosomes. If FISH is unavailable, conventional cytogenetics can be used as an alternative, but is much less sensitive.

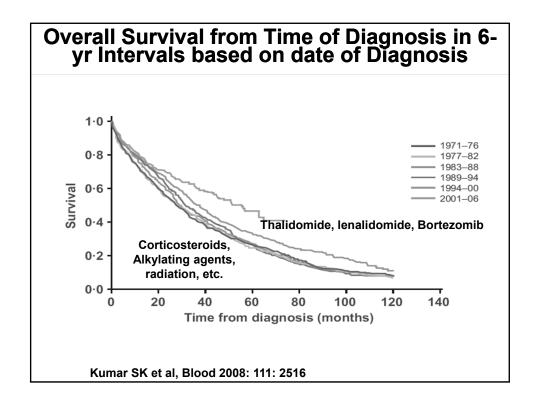
Rajkumar SV. Treatment of multiple myeloma. Nat Rev Clin Oncol 2011; 26:479. Rajkumar SV. Multiple myeloma: 2012 update on diagnosis, risk-stratification, and management. Am J Hematol 2012; 87:78.

Revised ISS and Novel agents


- 4,445 newly diagnosed patients enrolled onto 11 multicenter trials 2005-2012.
- Goal was to incorporate CD138-selected interphase FISH and tested for del(13), del(17p), and 14q32 translocations.
- Presence of Del(17p), t(4;14), or t(14;16) were considered high risk.

R-ISS	ISS	iFISH	LDH	os
1	β2M < 3.5, Alb ≥ 3.5	Standard	Normal	NR
2				83 mos.
3	β2M ≥ 5.5	High risk	or high	43 mos.

Palumbo A et al. Revised International Staging System for Multiple Myeloma: A report from the international myeloma working group. *JCO* 33, 3-Aug-2015.


History of Multiple Myeloma

- 1844 First reported case of soft, fragile bones, heat soluble substance in urine abnormal cells in bone marrow Sarah Newbury
- 1873 "Multiple Myeloma" term used
 1889 Detailed pathologic description published
 1903 Lytic lesions seen on radiographs
- 1939 Serum electrophoresis employed
- 1956 "Bence Jones" proteinuria described
- 1962 First use of melphalan
- 1964 First use of cyclophosphamide
- 1967 First use of corticosteroids
- 1983 First use of autologous stem cell transplantation
- 1990s Thalidomide found to be effective
- 2000s Revlimid and Velcade are FDA approved

2015: A GREAT YEAR for Myeloma

- 4 New drugs approved for relapsed/refractory MM Daratumumab: Nov 16, 2015: monoclonal ab, anti-CD38, single agent
- Elotuzumab: Nov 30,2015: monoclonal ab, SLAM-7 and NK
- cell activation, in combination with lenalidomide and Dex Ixazomib: Nov 20, 2015: oral proteosome inhibitor, in combination with lenalidomide and Dex
- Panobinostat: Feb 28, 2015: HDAC inhibitor, in combination with bortezomib and Dex

Approved Newly Dx MM	Newly Diagnosed Regimen	Approved Relapsed MM
Thalidomide (T) Lenalidomide (R) Bortezomib (V) Dexamethasone (D)	VRD VTD CVD (CyborD) CRD RD	Pomalidomide (P) Carlfizomib (K) Panobinostat Daratumumab Ixazomib
Prednisone (P)	VD Melphalan based (transplant ineligible)	Elotuzumab
Cyclophosphamide (C) Vincristine Doxil Melphalan		

1) Standard Induction treatment for fit patients

Drug (VRD)	Туре	Mode	Side Effects
Dexamethasone	Steroid	Pill, weekly	insomnia, weight gain
Revlimid	IMiDs (immune modulating)	Pill, daily	blood clots, diarrhea
Velcade	Proteasome Inhibitors	Shot 2x / wk subcutaneous	tingling numbness in hands or feet

- 2 Autologous transplant = High dose IV melphalan (Leads to 30 months of remission on average)
- Revlimid (pill) maintenance (Adds 18-23 months of remission on average)

Supportive Care: Palliative Radiation; Bisphosphonate-zolidronic acid

Auto transplant in Eligible patients

- Melphalan 200 mg/m² autologous transplant improves survival over standard cytotoxic chemotherapy¹⁻⁴
- Who can be transplanted safely?
 - Age \leq 75 y.o. (140 mg/m² 71-75 y.o.)
 - Functionally able to work at a "desk job"
 - Normal functioning liver by enzymes and PT/PTT, low risk PFTs, LVEF > 40%
 - No other interfering comorbidity
 - Dialysis patients are eligible for auto SCT (140 mg/m2)
- 1. Attal M et al, New England Journal of Medicine, 1996.
- 2. Child JA et al, New England Journal of Medicine, 2003.
- 3. Fermand et al, Journal of Clinical Oncology, 2005.
- 4. Barlogie B. et al, Journal of Clinical Oncology, 2006.

Bortezomib, Thalidomide and Dexamethasone (VTD) Is Superior to Bortezomib, Cyclophosphamide and Dexamethasone (VCD) Prior to Autologous Stem Cell Transplantation for Patients with De Novo Multiple Myeloma. Results of the Prospective IFM 2013-04 Trial. Philippe Moreau et al

VTD x 4 versus VCD x 4 as induction therapy prior to ASCT Symptomatic de novo MM less than 66 years Primary end-point : VGPR rate after cycle 4 340 patients overall (170 per arm).

ISS1 / 2 versus ISS 3 t(4;14) and / or del17p versus others

Arm A: Induction Therapy: 4 cycles VTD

Each cycle: 21 days
Thalidomide® 100 mg/d, PO D1 to D21
o Velcade® 1.3 mg/m²/d, SC D1, 4, 8 and 11
o Dexamethasone 40 mg/d, PO D1 to 4, D9 to 12
ARM B: Induction Therapy: 4 cycles of VCD

Each cycle : 21 days o Cyclophosphamide 500 mg/m²/d, PO D1, 8, 15 o Velcade® 1.3 mg/m²/d, SC D1, 4, 8 and 11 o Dexamethasone 40 mg/d, PO D1 to 4, D9 to

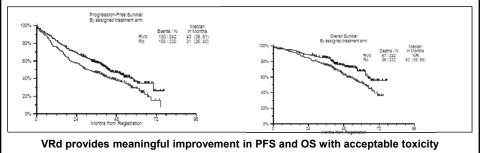
Intent-to-treat analysis			
_ M	VTD N = 169	VCD N = 169	P value
≥CR	13.0%	8.9%	0.22
≥ VGPR	66.3%	56.2%	0.05
≥ PR	92.3%	83.4%	0.01
	Per protoco	ol analysis	
	VTD N = 157	VCD N = 154	P value
> = CR	14.0%	9.1%	0.17
> = VGPR	70.7%	60.4%	0.05
> = PR	98.7%	90.3%	0.001

Response: centralized assessment (Dr Dejoie, Nantes), IMWG criteria 2011

	VTD, n = 169 Grade 3-4 %	VCD, n= 169 Grade 3-4 %	p value
Any Aes	63.9	68.2	0.40
Anemia	4.1	9.5	0.05
Neutropenia	18.9	33.1	0.003
Infection	7.7	10.1	0.45
Thrombocytopenia	4.7	10.6	0.04
Thrombosis	1.8	1.8	0.99
Cardiac disorders	1.2	0	0.16
Cystitis	0	0.6	0.32
GI symptoms	5.3	3.5	0.42
Periph. Neuropathy	7.7	2.9	0.05
PN grade 2-4	21.9	12.9	0.008

Toxicities assessed according to NCI CTCAE, version 4.0.

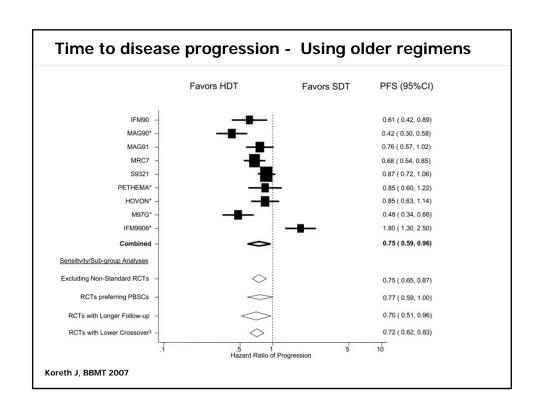
Bortezomib-thalidomide-dexamethasone (VTD) is superior to bortezomib-cyclophosphamide-dexamethasone (VCD) as induction therapy prior to autologous stem cell transplantation in multiple myeloma. Cavo et al leukemia:2015,2429-2431				
All patients	VTD (n=236)	VCD (n=236)	Р	
Complete response	44 (19%; 14–24)	13 (6%; 3–8)	<0.001	
Very good partial response or better	151 (64%; 58–70)	87 (37%; 31–43)	<0.001	
Partial response or better	220 (93%; 90–96)	192 (81%; 76–86)	<0.001	
Stable disease	16 (7%; 4–10)		0.001	
Progressive disease	0 (0%)	6 (3%; 1–5)	0.015	
Patients with ISS 2-3 Complete response	VTD (n=129) 26 (20%; 13–27)	<i>VCD (</i> n= <i>129)</i> 5 (4%; 1–7)	<0.001	
Very good partial response or better	86 (67%; 59–75)	45 (35%; 27–43)	<0.001	
Patients with t(4;14) and/or del(17p)	<i>VTD (</i> n=53)	VCD (n=53)		
Complete response	12 (23%; 11–34)	4 (8%; 0–15)	0.030	
Very good partial response or better	44 (83%; 73–93)	25 (47%; 34–61)	<0.001	
Dose and schedule same as Moreau et al. except- V and C given IV, 3 cycles each before SCT				

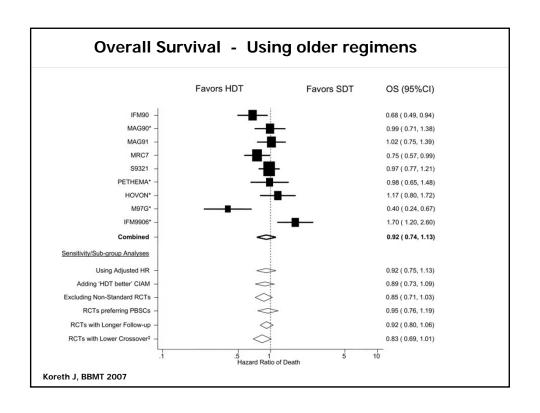

Toxicity

	VTD (n=236)	VCD (n=236)	Р
Any grade 3 or 4 adverse event	64 (27%)	61 (26%)	0.754
Any gr	ade 3 or 4 non-her	matological adverse e	vent
Skin rash	19 (8%)	2 (1%)	< 0.001
Peripheral neuropathy	17 (7%)	5 (2%)	0.009
Gastrointestinal events	15 (6%)	8 (3%)	0.135
Liver toxicity	5 (2%)	8 (3%)	0.399
Any	grade 3 or 4 hema	tological adverse eve	nt
Neutropenia	5 (2%)	19 (8%)	0.003
Anemia	0	16 (7%)	<0.001
Thrombocytopenia	1 (<1%)	10 (4%)	0.006
Study pr	otocol discontinuat	ion during induction th	nerapy
Toxic effects	8 (3%)	4 (2%)	0.242
Disease progression	0	3 (1%)	0.124
Early death	1 (<1%)	2 (1%)	0.500

Bortezomib, Lenalidomide and Dexamethasone (Rd)Vs. Lenalidomide and Dexamethasone in Patients (Pts)(VRd) with Previously Untreated Multiple Myeloma without an Intent for Immediate Autologous Stem Cell Transplant (ASCT): Results of the Randomized Phase III Trial SWOG S0777 Brian Durie, MD et al

- Randomized phase III: 2008-2012
- Stratified to ISS stage (I,II,III), Intent to transplant (Yes, NO)
- Lenalidomide/dex (Rd): 232 patients: R 25 mg days 1-21, dex 40 mg/d days 1 8, 15, 22, cycle q 28 days x 6 cycles
- Bortezomib/Rd (VRd): 242 patients: R 25 mg days 1-14, dex 20 mg/d days 1-4, 8-12, velcade 1.3 mg/m2 IV push days 1,4,8,11. cycle q 21 days x 8 cycles
- Maintenance: Rd until progression
- DVT prophylaxis: ASA 325 mg/d; HSV prophylaxis with VRd
- Differences b/w gps:
 - Fewer women VRd(37% vs 47% p=0.033)
 - Fewer older pts VRd (≥ 65yrs 38% vs 48% p=0.042)
- Primary Endpoint: PFS

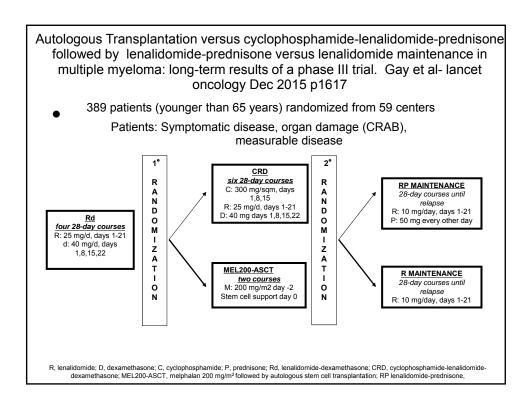

Brian Durie, MD et al			
	VRd	Rd	P-value
ORR	71.07%	63.79%	
Median PFS	43 mos	31 mos	0.0066
Median OS	NR	63 mos	0.0114
≥Grade 3 hem tox (%) Anemia Neutropenia thrombocytopenia	13 19 18	16 21 14	
≥Grade 3 non- hem tox (%) Neuropathy Thrombosis/embolism	24 8	5	<0.0001
Second primary malignancy	7 pts (3%)	9(4%)	



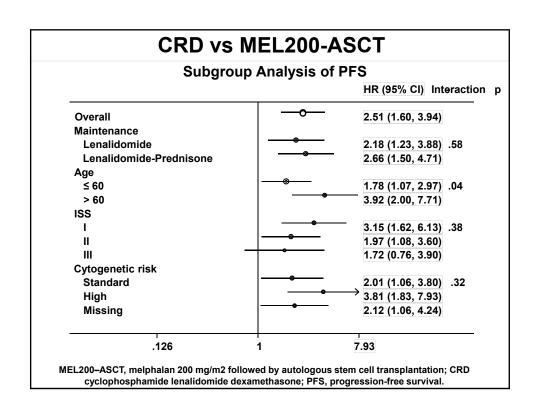
Conclusion

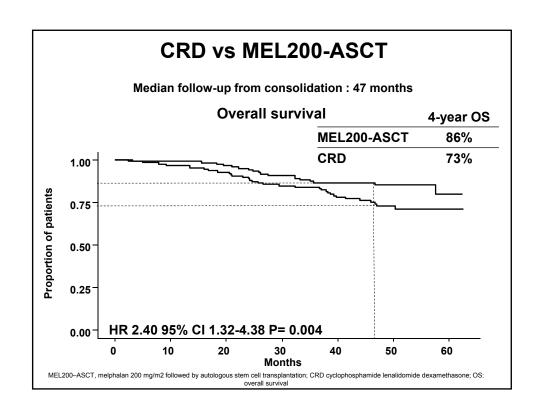
- The combination of A proteosome inhibitor (bortezomib), and an immune modulator(thalidomide, lenalidomide) as induction treatment is a superior regimen
- 3-drug regimen with Novel agents is superior to 2-drug regimen with Novel agent as Induction regimen

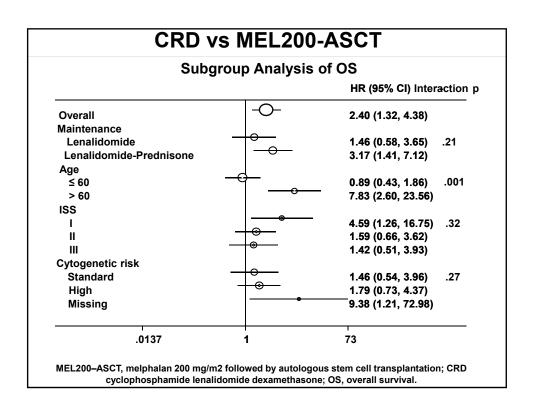
Autologous SCT as consolidation in newly Dx MM vs continuation of Therapy (Early vs delayed SCT) in the ERA of Novel Therapies

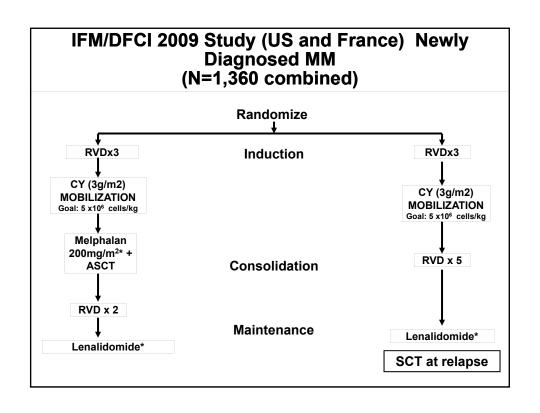


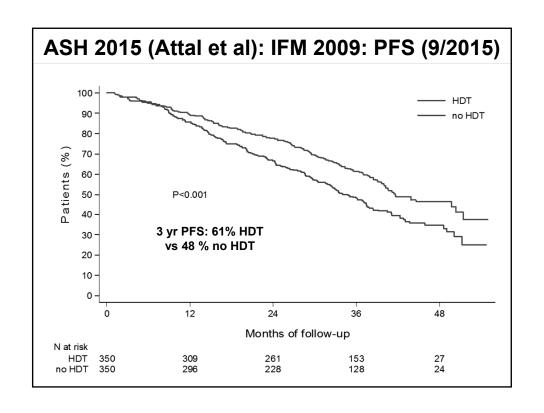

	Old regimen (VAD regimen)	New regimen incorporating Novel agents and maintenance
Overall response rate (ORR)	50-60%	80-100%
Complete response (CR)	16-25%	40-60%
Very good partial response (VGPR)	5-10%	20-30%
5 yr Overall survival (OS)	~30-40%	60-80%
Median time to disease progression (PFS)	15 months	47-53 mos

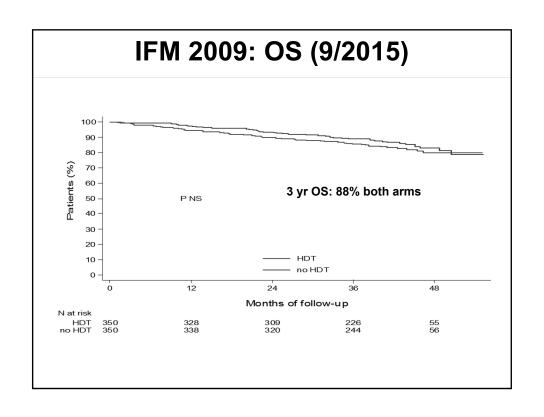

Palumbo A et al, 2006, Lancet p825; Mateos MV et al, Blood 2010, p 2259; Facon T et al, lancet 2007, p 1209; Sacchi s, Leuk lymphoma 2011, p 1942;

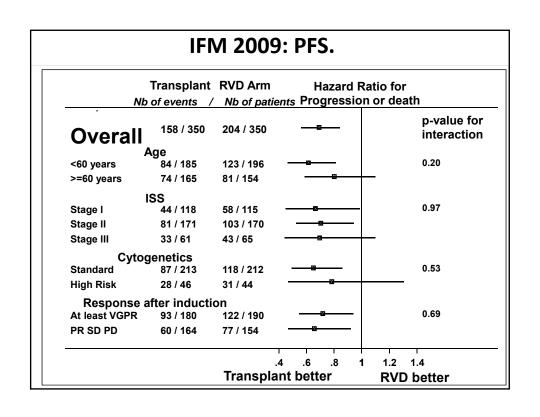

Transplant vs. NO Transplant in era of the Novel drugs as part of upfront Therapy? any benefit?




Patients Char	acteristics	
	MEL200-ASCT (n=127)	CRD (n=129)
Age		
median	57	56
>60 years	34	31
SS Stage		
ı	51%	45%
II	36%	50%
III	13%	16%
Chromosomal Abnormalities		
t (4;14)	9%	13%
t (14;16)	5%	5%
del 17	5%	8%
High-risk [t (4;14) or t(14;16) or del17]	18%	23%

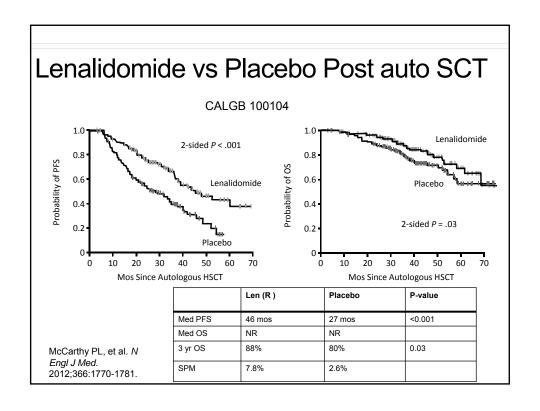


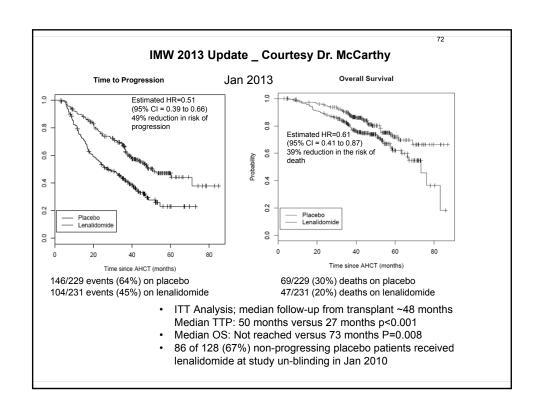


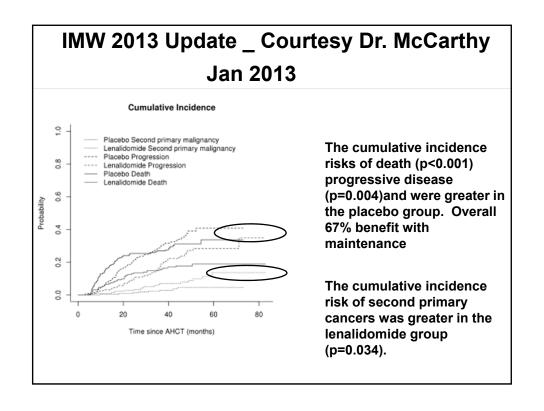


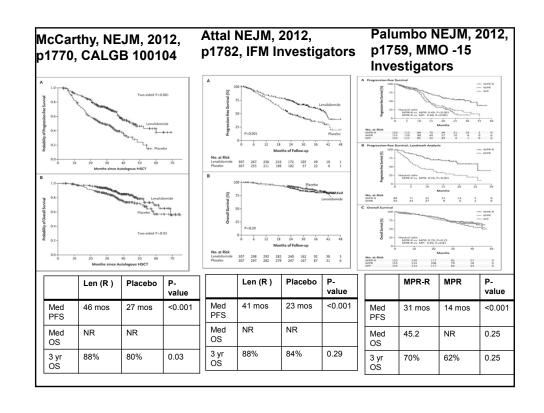
Best Response			
	RVD arm N=350	Transplant arm N=350	p-value
CR	49%	59%]
VGPR	29%	29%	0.02
PR	20%	11%	
<pr< td=""><td>2%</td><td>1%</td><td>J</td></pr<>	2%	1%	J
At least VGPR	78%	88%	0.001
Neg MRD by FCM , n (%)	228 (65%)	280 (80%)	0.001

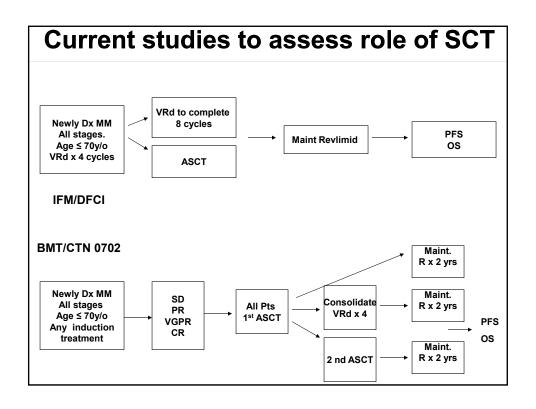
ASH 2015: IFM 2009: Causes of Death (9/2015)


	RVD arm N=48	Transplant N=54
Myeloma, n (%)	40/48 (83%)	35/54 (65%)
Toxicity, n (%)	4/48 (8%)	9/54 (16%)
SPM (AML/MDS)	1/48 (2%)	6/54 (11%)
Others	3/48 (6%)	4/54 (7%)


IFM 2009: Conclusions


- This second interim analysis demonstrates that transplantation :
- Is feasible: 93%
- Is associated with an acceptable Transplant Related Mortality: 1.4%.
- Is associated with an increased rate of neg MRD (80% vs 65%, p<0.01).
- Is associated with an improved 4-year PFS (47% vs 35%, p<0.001).
- Is associated with an improved 4-year TTP (49% vs 35%, p<0.001).
- ❖ A longer follow up is required to draw any conclusion concerning OS,
- Since the 4-year survival is high in both arms (80% vs 83%).
- However, transplantation is already associated with a reduced risk of death due to myeloma, but has a higher rate of toxicity (acute and long term)
 - > in the era of new drugs, Transplantation is "A Standard of Care" but key questions remain.


Conclusion


- In the era of novel agents, Autologous SCT remains important in the management of newly diagnosed MM- improved PFS and maybe OS
- HOWEVER
- Could this be affected by a longer maintenance ?(indefinite)- the importance of the US study.

Relapse Patients

- Use any novel drug combinations that have not been used before.
- Repeat drugs that have been used before.
- Participate in clinical trials using other new drugs in development
- Older regimen in Combinations with novel drugs
- · Repeat Autologous stem cell transplant
- Allogeneic stem cell transplant in selected patients (always on study)

