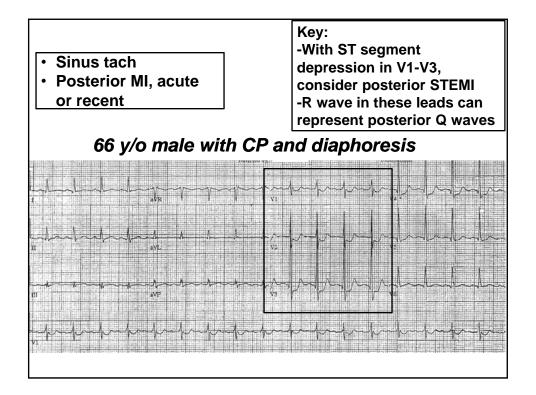
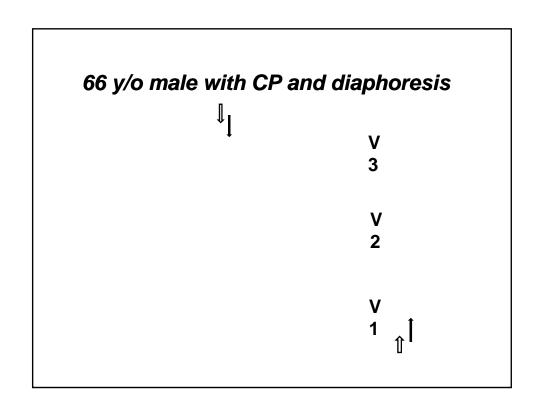
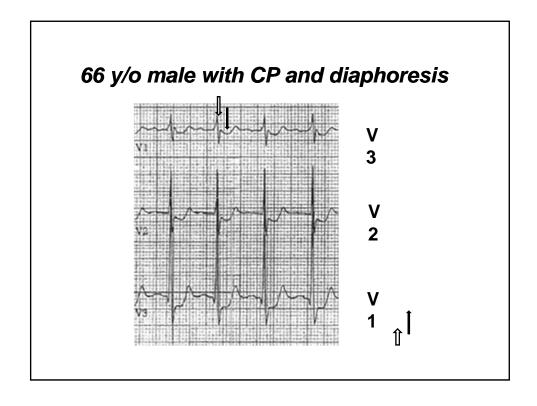
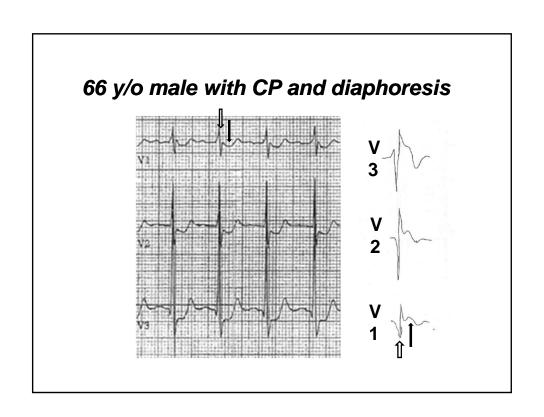
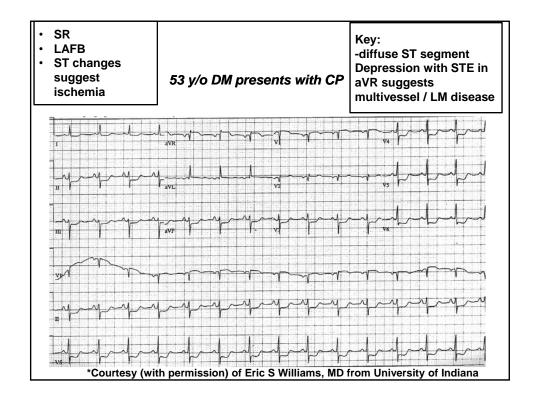

Office ECG Interpretation


Jason Evanchan, DO
Assistant Professor of Medicine
Division of Cardiovascular Medicine
The Ohio State University Wexner Medical Center


Outline of topics


- High risk ischemia
- T wave inversions
- LBBB / RBBB / RVOT PVC
- Atrial activity detection
- ECGs in the young adult at risk for SCD





ST segment elevation

Differential Diagnosis of ST segment elevation

Myocardial injury / infarction from acute vessel occlusion Prinzmetal angina

Post-myocardial infarction: from venticular aneurysm

Acute pericarditis

Normal Variant such as early repolarization pattern

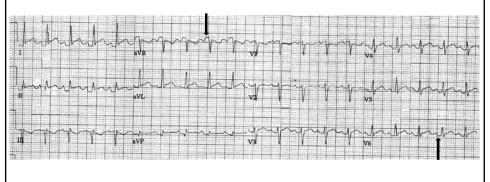
Repolarization from LVH and LBBB

Intracranial hemorrhage (typically with deep TW inversion)

Takotsubo's cardiomyopathy

Brugada pattern (RBBB-pattern with STE in precordial leads

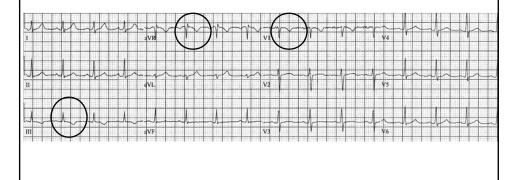
Acute pulmonary embolism (right precordial leads)


Modified from Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, Tenth Ed. Pg 145

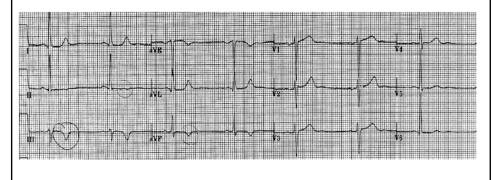
- Sinus Tachycaria
- Acute Pericarditis

Key:

- -Diffuse ST segment elevation -No reciprocal changes
- -PR depression (PRE in aVR)


42 y/o with chest pain

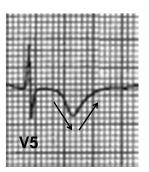
T wave inversion


Normal ECG

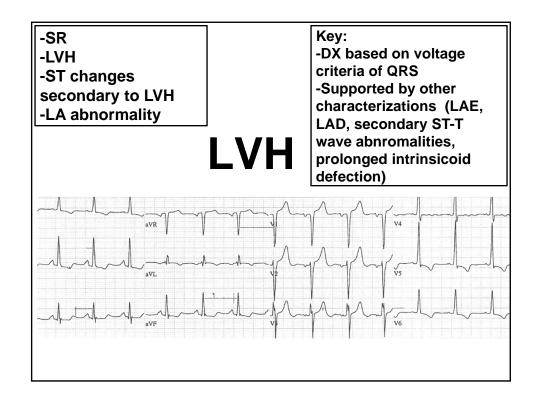
- -Normally T wave is inverted in V1, aVR, and often III -If upright in V1 can be sign of ischemia
- -Juvenile T waves: inverted V1-V3

- Sinus bradycardia Inferior TWI c/w
- ischemic

61 y/o with CP and elevated trop



T wave inversion


ST-T wave abnormality secondary to....

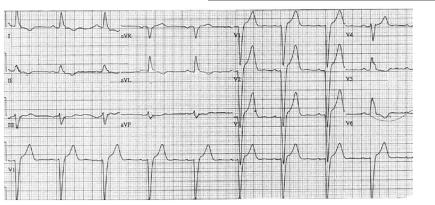
Left ventricular hypertrophy

Ischemia

LVH

Key:

-Sensitivity <50%, specificity can be >85% -Limitations include young age, body habitus


	Criteria	
Cornell criteria	S in V3 + R in aVL \geq 28 mm (men) S in V3 + R in aVL \geq 20 mm (women)	
Sokolow-Lyon criteria	S in V1 + R in V5 or V6 > 35 mm R in aVL > 11 mm	
Romhilt-Estes point system 4 points = "probable" 5 points = "definite"	Any limb lead R wave or S wave > 20 mm (3 points) or S in V1 or S in V2 ≥ 30 mm (3 points) or R in V5 or V6 ≥ 30 mm (3 points) ST-T wave abnormalities (not on dig) (3 points) LA abnormalities (3 points) LAD ≥ 30 degrees (2 points) QRS duration ≥ 90 msec (1 point) Intrinsicoid defection in V5 or V6 ≥ 50 msec (1 point)	

Modified from Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, Tenth Ed. Pg 129

-sinus bradycardia-LBBB

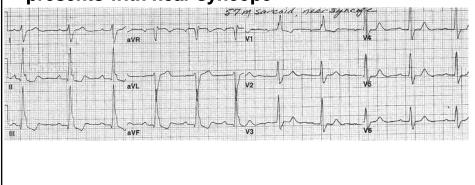
Keys to diagnosing LBB:
-QRS > 120 ms
-Broad, notched or slurred R wave in I, aVL, V6. Deep S wave V1, V2
-Absence of septal q waves in I, V5, V6 prolonged intrinsicoid defection)
-secondary ST / T wave abnormalities
-typically LAD

49 y/o CAD history

LBBB: additional notes

- ~1% of general population
- -Following AMI, myocarditis (sarcoidosis)
- -Functional / rate-related (longshort)
- Prognosis:
 - depends on type / severity of any concurrent underlying heart disease / other conduction disease
 - Independent predictor of allcause mortality in pts with CAD, after MI, with congestive heart failure

- Challenging in pts with chest pain
- Should lead to evaluation of HTN, CAD, CM
- CRT if EF <35%
- Abnormalities in coronary blood flow
 - Vasodilator stress


-SR with 1st degree AV block

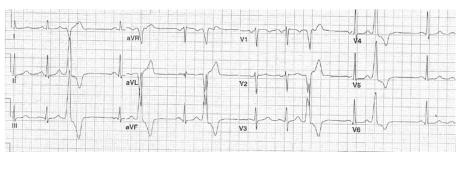
- -RBBB
- -Left posterior fascicular block

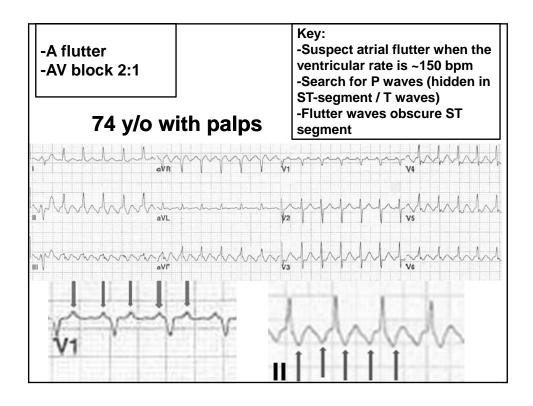
Keys to diagnosing LBBB:

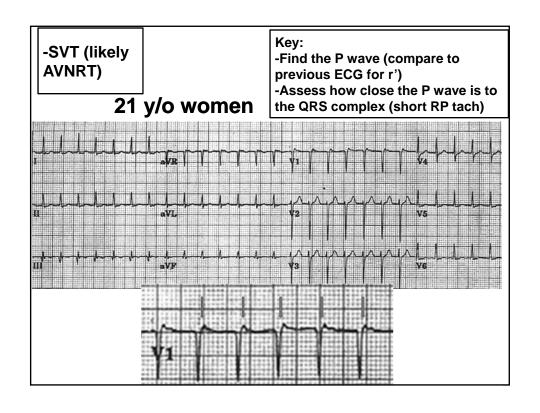
- -QRS > 120 ms
- -rsR' pattern V1 and V2 (R' taller then r)
- -Wide, slurred S wave in I, V6
- -typically normal axis
- -If axis deviation consider LAFB / LPFB

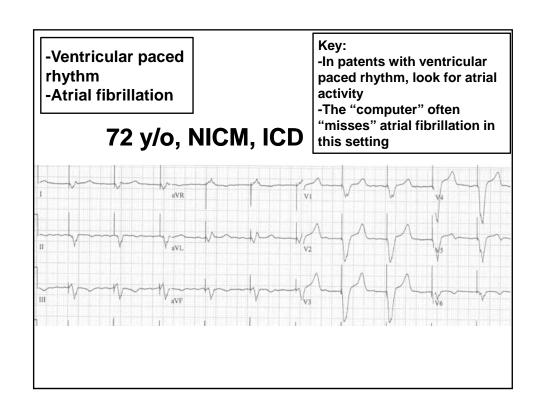
57 y/o with sarcoidosis, presents with near syncope

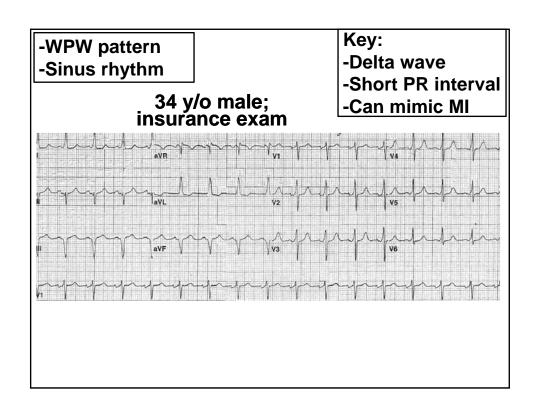
RBBB: additional notes

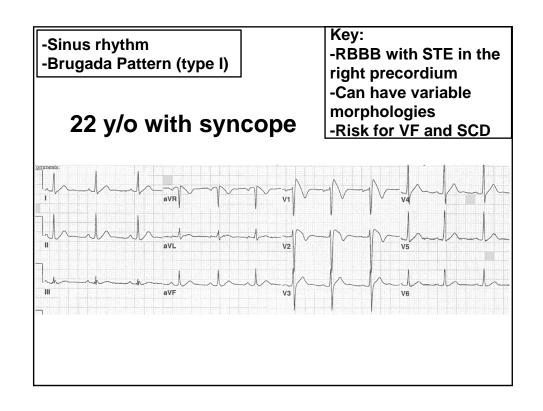

- Can be associated with structural heart disease (cor pulmonale, PE, myocarditis, HTN, CHD)
- Does not interfere with DX of MI b/c the initial 0.04 sec forces are normal
- Can exercise with stress testing

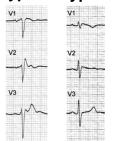

- Prognosis tied to underlying heart disease (excellent with structurally normal heart)
- mimickers such paced rhythm, Brugada


-SR -Frequent monomorphic PVCs Keys to RVOT tachycardia / PVCs -PVCs / VT in left bundle morphology, inferior axis, with transition V2-V3


-Typically structurally normal heart -Can be amenable to ablation


56 y/o with palpitations





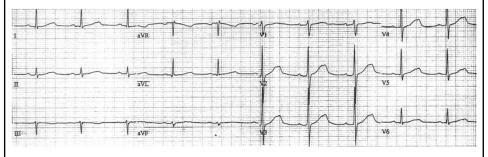
Type 2 Type 3

Author: Napolitano C, Priori SG. Brugada syndrome. Orphaned J Rare Dis. 2006 Sep 14;1:35 (CC BY 2.0)

Wilde AA, et al. Circ 2002; 106: 2514-19

Brugada Syndrome (BrS). Expert Consensus Recommendations on BrS Diagnosis

- 1. **BrS** is diagnosed in pts with ST segment elevation with type 1 morphology ≥ 2 mm in ≥1 lead among the right precordial leads (V1, V2), positioned in the 2nd, 3rd, or 4th intercostal space occurring either spontaneously or after provocative drug test with IV administration of Class I antiarrhythmic drugs.
- 2. BrS is diagnosed in pts with type 2 or type 3 ST-segment elevation in ≥1 lead among the right precordial leads (V1, V2), positioned in the 2nd, 3rd, or 4th intercostal space when a provocative drug test with IV administration of Class I antiarrhythmic drugs induces a type I ECG morphology


2013 HRS / EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes

-Sinus rhythm -Prolonged QT

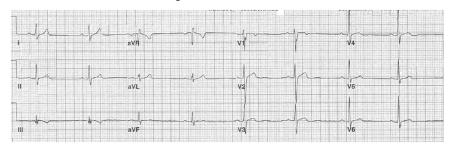
37 y/o with congenital QT prolongation

Key:

-Measure longest QT (well seen) -Assess for secondary causes (medications / electrolytes) -QTc = QT interval ÷ sq rt RR interval

 * Courtesy (with permission) of Eric S Williams, MD from University of Indiana

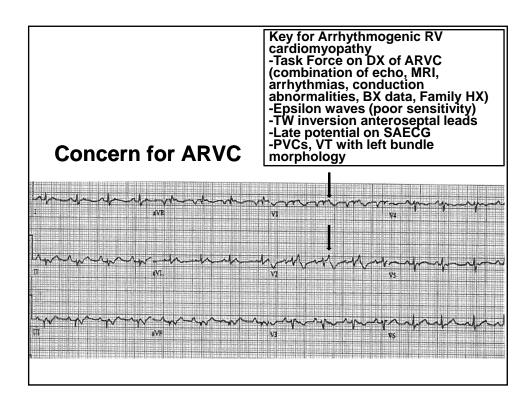
Long QT Syndrome (LQTS) Expert Consensus Recommendations on LQTS Diagnosis


- 1. LQTS is diagnosed:
 - a. In the presence of a LQTS risk score of \geq 3.5 in the absence of a secondary cause for QT prolongation and / or
 - b. In the presence of an unequivocally pathogenic mutation in one of the LQTS genes or
 - c. In the presence of a QT interval corrected for HR using Bazett's formula (QTc) ≥ 500 msec in repeated 12 lead ECGs, and in the absence of a secondary cause for QT prolongation.
- 2. LQTS can be diagnosed in the presence of a QTc btw 480-499 msec in repeated 12 lead ECGs in a patient with unexplained syncope in the absence of a secondary cause for QT prolongation and in the absence of a pathogenic mutation

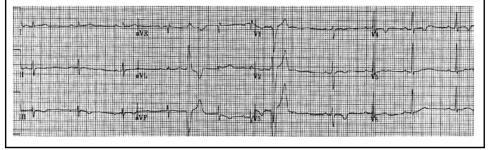
2013 HRS / EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes

1993-2011 LQTS Diagnostic Criteria		
Findings	Points	
A. QTc (in the absence of medications known to effect these ECG features) ≥480 msec 460-479 msec 450-459 msec (in males) B. QTc 4 th min of recovery from exercise C. Torsades de pointes D. T wave alternans E. Notched T wave in 3 leads F. Low HR for age	3 2 1 1 2 1 1 0.5	
Clinical History A.Syncope With stress Without stress B. Congenital Deafness	2 1 0.5	
Family History A.Family members with definite LQTS B.Unexplained SCD below the age of 30 in immediate family member	1 0.5	

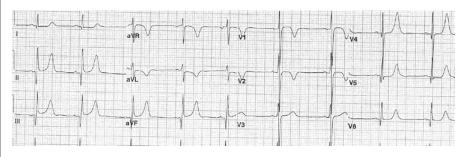
Schwartz et al. Circ 88: 782,1993 Keating. Circ 85: 1973, 1992 Schwartz et al. Circ 124: 2181-4 -Sinus rhythm -Short QT Key:
-Risk for SCD with structurally normal heart


18 y/o

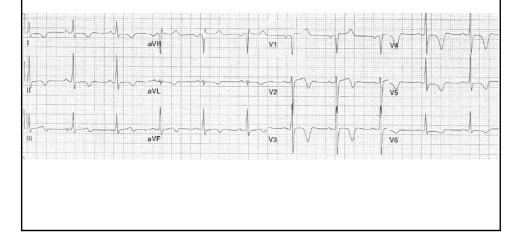
Short QT Syndrome (SQTS). Expert Consensus Recommendation on SCQS


- 1. SQTS is diagnosed in the presence of a QTc ≤ 330 msec
- 2. SQTS can be diagnosed in the presence of a QTc < 360 msec and one or more of the following: a pathogenic mutation, family h/o SCD at ≤ 40, survival of a VT / VF episode in the absence of heart disease

2013 HRS / EHRA/APHRS Expert Consensus Statement on the Diagnosis and Management of Patients with Inherited Primary Arrhythmia Syndromes


- -Sinus rhythm
 -Anterior TW inversion
 -PVC in left bundle
 morphology
- Key for Arrhythmogenic RV cardiomyopathy
 -Task Force on DX of ARVC (combination of echo, MRI, arrhythmias, conduction abnormalities, BX data, Family HX)
 -Epsilon waves (poor sensitivity)
 -TW inversion anteroseptal leads
 -Late potential on SAECG
 -PVCs, VT with left bundle morphology

21 y/o with exercise induced syncope. MRI, echo, and ECG c/w ARVC


- Key for HCM
 -ECG is rarely normal, but findings are not often specific
- -Can have prominent voltages with repolarization
- -Prominent Q waves (inferior and lateral leads)
- -LAD
- -Deeply inverted T waves with apical variant HCM

20 y/o with HOCM. Septal hypertrophy. Peak LVOT gradient 144 mm Hg

51 y/o with syncope. FHX of SCD. **Evidence of apical HCM** on cardiac MRI

Key for apical HCM -Deep, symmetrical, inverted T waves anterolateral leads

Classification of Heart Block

Classification of Heart block	Notes
First Degree AV Block	PR interval > 200 msec. All P waves followed by QRS complexes
2 nd Degree, Mobitz type I (Wenckebach)	Progressive PR prolongation until a P wave is not conducted Note: compare the post non-conducted beat PR interval to the PR interval immediately before Typically at the level of the AV node
2 nd Degree, Mobitz type II	Intermittent or repetitive non-conducted / dropped beats without prior PR lengthening (fixed PR interval) Site of pathology is distal to the AV node
Complete Heart Block	Failure of all P wave to conduct

Thank you!

- jason.evanchan@osumc.edu
- Special thanks to:
 - Dr. Rick (Stephen) Schaal
 - Dr. Eric S. Williams